
PL/SQL Overview

PL/SQL is  Procedural Language extension to SQL. It is loosely based on Ada (a variant
of Pascal developed for the US Dept of Defense). PL/SQL was first released in ١٩٩٢ as
an optional extension to Oracle ٦. It is exclusive product of Oracle Corporation

PL/SQL,  is  an  application-development  language  that  is  a  superset  of  SQL,
supplementing  it  with  standard  programming-language  features  that  include  the
following: 

 block (modular) structure

 flow-control statements and loops 

 variables, constants, and types

 structured data 

 customized error handling

Another feature of PL/SQL is that it allows to store compiled code directly in a database.
This  enables  any  number  of  applications  or  users  to  share   same  functions  and
procedures. In fact, once a given block of code is loaded into memory, any number of
users can use copy of the code simultaneously. PL/SQL also enables  to define triggers,
which are subprograms that a database executes automatically in response to specified
events. 

Basic Structure and Syntax of PL/SQL

PL/SQL, groups the syntax of the programs into units called  blocks. These blocks can
either  named or unnamed. The named blocks  are called  subprograms and unnamed
blocks are called anonymous blocks. Subprograms can be referred as either functions or
procedures. The difference between functions and procedures is that a function can be
used in an expression and it  returns a value to that expression.  While a procedure is
invoked as a standalone statement and passes values to the calling program only through
parameters. Subprograms can be nested within one another and can be grouped in larger
units called packages. 

A block has three parts: 

 A DECLARE section. In this section one can define local variables, constants,
types, exceptions, and nested subprograms. 



 An EXECUTABLE section. In this is the actual code of a block gets executed.
This  part of the block must be always  present in the program.

 An EXCEPTION section. This section is used for handling runtime errors and
warnings.

The DECLARE Section

The DECLARE section begins with the keyword DECLARE and ends when the keyword
BEGIN. The next section that follows is the EXECUTABLE section. One can declare
types,  constants,  variables,  exceptions,  and cursors  in  any order,  as  long as  they are
declared before they are referenced in the program. Subprograms declared last. A semi-
colon terminates each definition. 

Datatypes

PL/SQL provides a number of predefined data types for variables and constants. It also
enables you to define your own types, which are subtypes of the predefined types. The
types fall into the following three categories: 

 Scalar. These include all string, number, and binary types. 
 Composite.  These are  structured data  types.  The PL/SQL composite  types  are

TABLE and RECORD. 
 Reference. There is one kind of reference data type--REF CURSOR--which is a

pointer to a cursor.. 

In  many cases,  one   can  convert  from one data  type  to  another,  either  explicitly  or
automatically. 

One can also define a variable so that it inherits its data type from a database column or
from another variable or constant. 

Declaring Variables

Given below is the syntax of declaring a variable

cnum INTEGER(٥) NOT NULL;

It declares a five-digit integer called cnum that will not accept nulls. 

Inheriting  Datatypes To  inherit  the  data  type  of  a  database  column  or  of  another
variable, one can use the %TYPE attribute in place of a declared data type, as follows: 

snum cnum%TYPE;



This  means  that  snum inherits  the datatype  of  cnum.  You can inherit  datatypes  from
database columns in the same way, by using the notation tablename.columname in place
of the variable name. 

Declaring Constants

Constants  can  be  declared   the  same  way as  variables,  except   adding  the  keyword
CONSTANT and  assigning  a value.  Constants do not take attributes other than the
value. 

An example of contact is  follows: 

interest CONSTANT REAL(٥,٢) := ٧٥٩.٣٢;

Defining Types

User-defined types in PL/SQL are subtypes of existing data types. They provide you with
the ability to rename types and to constrain them by specifying for your subtype lengths,
maximum lengths, scales, or precisions, as appropriate to the standard datatype on which
the subtype is based.

For example: 

SUBTYPE shortnum IS INTEGER(٣); This defines SHORTNUM as a ٣-digit version of
INTEGER. 

Scope and Visibility

Nested subprograms, defined in the DECLARE section, can be called from either of the
other sections, but only from within the same block where they are defined or within
blocks  contained  in  that  block.  Variables,  constants,  types,  and  subprograms  defined
within a block are local to the  block, and their definitions are not applicable outside of
the block. Objects that are local to a block may be used by subprograms contained at any
level of nesting in the block. Such objects are global to the block that calls them. 

The area of a program within which an object can be used is called the object's scope. An
object's scope is distinct from its visibility. The former is the area of the program that can
reference  the  object;  the  latter  is  the,  generally  smaller,  portion  that  can  reference  it
without qualification. 

Data Structures

PL/SQL provides two structured data types: TABLE and RECORD. It also provides a
data structure called a cursor that holds the results of queries. Cursors are different from
the  other  two  in  that  you  declare  variables  and  constants  to  be  of  type  TABLE or
RECORD just as you would any other data type. Cursors, on the other hand, have their
own syntax and their own operations. Explanations of these types follow: 



PL/SQL Tables: These are similar to database tables, except that they always consist of
two columns: a column of values and a primary key. This also makes them similar to
one-dimensional arrays, with the primary key functioning as the array index. Like SQL
tables, PL/SQL tables have no fixed allocation of rows, but grow dynamically. One of
their  main  uses  is  to  enable  you  to  pass  entire  columns  of  values  as  parameters  to
subprograms. With a set of such parameters, you can pass an entire table. The primary
key is always of type BINARY_INTEGER, and the values can be of any scalar type. 

You declare objects of type TABLE in two stages: 

١. You declare a subtype using the following syntax: 

TYPE type_name IS TABLE OF

datatype_spec

[ NOT NULL ]

INDEX BY BINARY INTEGER;

Where datatype_spec means the following: 

datatype | variablename%TYPE | tablename.columname%TYPE 

In other words, you can either specify the type  of values directly or use the %TYPE
attribute to inherit the data type from an existing variable or database column. 

٢. You assign objects to this subtype in the usual way. You cannot assign initial values to
tables, so the first reference to the table in the EXECUTABLE section must provide it at
least one value. 

When you reference PL/SQL tables, you use an array-like syntax of the form: 

column_value(primary_key_value)

In other words, the third row (value) of a table called "Employees" would be referenced
as follows: 

Employees(٣)

You can use these as ordinary expressions. For example, to assign a value to a table row,
use the following syntax: 

Employees(٣) := 'Marsha';



Records As in many languages, these are data structures that contain one or more fields.
Each record of a given type contains the same group of fields with different values. Each
field  has  a  datatype,  which  can be RECORD. In other  words,  you  can  nest  records,
creating data structures of arbitrary complexity. As with tables, you declare records by
first declaring a subtype, using the following syntax: 

TYPE record_type IS RECORD

(fieldname datatype[, fieldname datatype]...);

The  second  line  of  the  above  indicates  a  parenthesized,  comma-separated,  list  of
fieldnames  followed by data  type  specifications.  The  data  type  specifications  can  be
direct or be inherited using the %TYPE attribute. 

You can also define a record type that automatically mirrors the structure of a database
table or of a cursor, so that each record of the type corresponds to a row, and each field in
the record corresponds to a column. To do this, use the %ROWTYPE attribute with a
table or cursor name in the same way you would the %TYPE attribute with a variable, or
column. The fields of the record inherit the column names and data types from a cursor or
table. 

Cursors  A  cursor  is  a  data  structure  that  holds  the  results  of  a  query  (a  SELECT
statement)  for  processing by other  statements.  Since the output  of  any query has  the
structure of a table, you can think of a cursor as a temporary table whose content is the
output of the query. 

Exceptions

The DECLARATION  section can also be used to define your  own error conditions,
called "exceptions". 

Declaring Subprograms

You must place all subprogram declarations at the end of the declare section, following
all  variable,  constant,  type,  and exception  declarations  for  a  block.  The  syntax  is  as
follows: 

PROCEDURE procedure_name (parameter_name datatype,

parameter_name datatype...) IS

{local declarations}

BEGIN {executable code}

EXCEPTION

END;



The names you give the parameters in the declaration are the names that the procedure
itself uses to refer to them. These are called the formal parameters. When the procedure
is invoked, different variables or constants may be used to pass values to or from the
formal parameters; these are called the actual parameters. 

When calling  the procedure,  you can use each parameter  for input  of a  value to  the
procedure, output of a value from it, or both. These correspond to the three  parameter
modes: IN, OUT, and IN/OUT. 

Functions are the same, except for the addition of a return value, specified as follows: 

FUNCTION function_name (parameter_name, parameter_name datatype...)

RETURN datatype IS

{local declarations}

BEGIN {executable code}

EXCEPTION {local exception handlers}

END;

A RETURN statement in the executable section actually determines what the return value
is. This consists of the keyword RETURN followed by an expression. When the function
executes the RETURN statement, it terminates and passes the value of that expression to
whichever statement called it in the containing block. 

The EXECUTABLE Section

The executable section is the main body of code. It consists primarily of SQL statements,
flow control statements, and assignments. 

Assignments

The assignment operator is :=. For example, the following statement assigns the value ٤٥
to the variable a: 
a := ٤٥;

Character strings should be set off with single quotes (') as in all expressions. An example
follows: 

FNAME := 'Clair';

Flow Control

PL/SQL supports the following kinds of flow-control statements: 



 IF statements. These execute a group of one or more statements based on whether
a condition is TRUE. 

 Basic loops. These repeatedly execute a group of one or more statements until an
EXIT statement is reached.

 FOR loops. These repeatedly execute a group of one or more statements a given
number of times or until an EXIT statement is reached.

 WHILE loops. These repeatedly execute a group of one or more statements until a
particular condition is met or an EXIT statement is reached.

 GOTO statements.  These pass execution directly to another point in the code,
exiting loops and enclosing blocks as necessary. Use these sparsely, as they make
code difficult to read and debug.

IF Statements

These are similar to the IF statement in many other programming languages. 

The IF statement has the following forms: 

١ IF <condition> THEN <statement-list>;

END IF;

If  the  condition  following  IF  is  TRUE,  PL/SQL  executes  the  statements  in  the  list
following THEN. A semicolon terminates this list. END IF (not ENDIF) is mandatory
and terminates the entire IF statement. Here is an example: 

IF balance > ٥٠٠ THEN send_bill(customer);

END IF;

We are assuming that send_bill is a procedure taking a single parameter. 

٢ IF <condition> THEN <statement-list>;

ELSE <statement-list>;

END IF;

This is the same as the preceding statement, except that, if that condition is FALSE or
NULL, PL/SQL executes  the statement  list  following ELSE instead of that following
THEN. 

٣ IF <condition> THEN <statement-list>;

ELSIF <condition> THEN <statement-list>;



ELSIF <condition> THEN <statement-list>;.....

ELSE <statement-list>;

END IF;

You can include any number of ELSIF (not ELSEIF) conditions. Each is tested only if
the IF condition and all preceding ELSIF conditions are FALSE or NULL. As soon as
PL/SQL finds an IF or ELSIF condition that is TRUE, it executes the associated THEN
statement list and skips ahead to END IF. The ELSE clause is optional, but, if included,
must come last. It is executed if all preceding IF and ELSIF conditions are FALSE or
NULL. 

Basic Loops

A basic loop is  that keeps repeating the executing the program statements until an EXIT
statement is reached. The EXIT statement must be within the loop itself. If there is  no
EXIT (or GOTO) statement present in the program, the loop will be infinite.

For example follows: 

credit := ٠;

 LOOP

IF c = ٥ THEN EXIT;

END IF;

credit := credit + ١;

END LOOP;

This loop keeps incrementing credit until it reaches ٥ and then exits. An alternative to
placing an exit statement inside an IF statement is to use the EXIT-WHEN syntax, as
follows: 

EXIT WHEN credit = ٥;

FOR Loops

A FOR loop, as in most languages,  repeats a group of statements a given number of
times. The following FOR loop is equivalent to the example used for basic loops, except
that it also changes a variable called interest. 

FOR credit IN ٥..١ LOOP

interest := interest * ١.٢;

END LOOP;



The numbers used to specify the range (in this case, ١ and ٥) can be variables, so you can
let the number of iterations of the loop be determined at runtime if you wish. 

WHILE Loops

A WHILE loop repeats a group of statements until a condition is met. Here is a WHILE
loop that is the equivalent of the preceding example: 

credit := ١;

WHILE credit <= ٥ LOOP

interest := interest * ١.٢;

credit := credit + ١;

END LOOP;

GOTO Statements

A GOTO statement immediately transfers execution to another point in a program. The
point in the program where the statement is to arrive must be preceded by a label. A label
is an identifier for a location in the code. It must be unique within its scope and must be
enclosed in double angle brackets, as follows: 

<<this_is_a_label>>

You only use the brackets at the target itself, not in the GOTO statement that references
it, so a GOTO statement transferring execution to the above label would be: 

GOTO this_is_a_label;

A GOTO statement is subject to the following restrictions: 

 It must branch to an executable statement, not, for example, an END.

 It cannot branch to a point within the body of IF or a LOOP statement, unless it is
contained in the body of that statement itself.

 It cannot branch to a subprogram or enclosing block of the present block (with
one exception, explained shortly). 

 It cannot branch from one IF statement clause to another. That is to say, it cannot
jump between THEN, ELSIF, and ELSE clauses  that  are  part  of  the same IF
statement.



 It cannot branch from the EXCEPTION section to the EXECUTABLE section of
the same block. 

 It  can,  however,  branch  from  the  EXCEPTION  section  of  a  block  to  the
EXECUTABLE section of an enclosing block, which is the exception to the third
rule above. 

The EXCEPTION Section

The  EXCEPTION  section  follows  the  END  that  matches  the  BEGIN  of  the
EXECUTABLE section and begins with the keyword EXCEPTION. It contains code that
responds to runtime errors. An exception is a specific kind of runtime error. When that
kind of error occurs, you say that the exception is raised. An exception handler is a body
of  code designed to  handle  a  particular  exception  or  group of  exceptions.  Exception
handlers,  like the rest  of the code,  are operative only once the code is compiled and
therefore can do nothing about compilation errors. 

There are two basic kinds of exceptions: predefined and user-defined. The predefined
exceptions are provided by PL/SQL in a package called STANDARD. They correspond
to various runtime problems that are known to arise often--for example, dividing by zero
or running out of memory.  

The Oracle Server can distinguish between and track many more kinds of errors than the
limited  set  that  STANDARD predefines.  Each of  Oracle's  hundreds  of  messages  are
identified with a number, and STANDARD has simply provided labels for a few of the
common ones. You can deal with the other messages in either or both of two ways: 

 You can define your own exception labels for specified Oracle messages using a
pragma (a compiler directive). This procedure will be explained shortly.

 You can define a handler for the default exception OTHERS. Within that handler,
you can identify the specific error by accessing the built-in functions SQLCODE
and  SQLERRM,  which  contain,  respectively,  the  numeric  code  and  a  prose
description of the message. 

You can also define your own exceptions as will be shown. It is usually better, however,
to  use  Oracle  exceptions  where  possible,  because  then  the  conditions  are  tested
automatically when each statement is executed, and an exception is raised if the error
occurs. 

Declaring Exceptions

PL/SQL predefined exceptions, of course, need not be declared. You declare user-defined
exceptions  or  user-defined  labels  for  Oracle  messages  in  the  DECLARE  section,
similarly to variables. An example follows: 



customer_deceased EXCEPTION;

In other words, an identifier you choose followed by the keyword EXCEPTION. Notice
that all this declaration has done is provide a name. The program still has no idea when
this exception should be raised. In fact, there is at this point no way of telling if this is to
be a user-defined exception or simply a label for an Oracle message. 

Labeling Oracle Messages

If a previously-declared exception is to be a label for an Oracle error, you must define it
as such with a second statement in the DECLARE section, as follows: 
PRAGMA EXCEPTION_INIT (exception_name, Oracle_error_number);

A PRAGMA is a instruction for the compiler,  and EXCEPTION_INIT is the type of
PRAGMA. This tells the compiler to associate the given exception name with the given
Oracle error number. This is the same number to which SQLCODE is set when the error
occurs. The advantage of this over defining your own error condition is that you pass the
responsibility for determining when the error has occurred and raising the exception to
Oracle.. 

User-Defined Exceptions

If a declared condition is to refer a user-defined error, in the EXECUTABLE section,
you must test the situation that is intend the exception to handle whenever appropriate
and raise the condition manually, if needed. 

Here is an example: 

IF cnum < ٠ THEN RAISE customer_deceased;

You can also use the RAISE statement to force the raising of predefined exceptions. 

Handling Exceptions

Once an exception is raised, whether explicitly with a RAISE statement or automatically
by Oracle, execution passes to the EXCEPTION section of the block. If a handler for the
raised exception is not found in the current block, enclosing blocks are searched until one
is found. If PL/SQL finds an OTHERS handler in any block, execution passes to that
handler. 

This is the syntax of an exception handler: 

WHEN exception_condition THEN statement_list;

The  exception  is  the  identifier  for  the  raised  condition.  If  desired,  you  can  specify
multiple exceptions for the same handler, separated by the keyword OR. The exception
can be either one the package STANDARD provided or one you declared. The statement



list does what is appropriate to handle the error--writing information about it to a file, for
example--and arranges to exit the block gracefully if possible. Although exceptions do
not necessarily force program termination, they do force the program to exit the current
block. 

Storing Procedures and Functions in the Database:

To create  a procedure or function  that is to be stored as a database object, we issue a
CREATE PROCEDURE or a CREATE FUNCTION statement directly on a server using
SQL*PLUS or Server Manager. The easy way to do this is to use a ordinary text editor to
write   the  CREATE  statement  and  then  to  load  it  as  a  script.  This  approach  is
recommended because  often a group of procedures and functions are created in a batch.
These groups are called "packages". 

The  syntax  for  these  statements  is  slightly  different  than  that  is  used  to  declare
subprograms in PL/SQL, as the following example shows: 

CREATE PROCEDURE fire_employee (empno INTEGER) IS

BEGIN

DELETE FROM Employees WHERE enum = empno;

END;

As you can see, the main difference is the addition of the keyword CREATE. You also
have the option of replacing the keyword IS with AS, which does not affect the meaning.
To replace an existing procedure of the same name with this procedure  you can use
CREATE OR REPLACE instead of simply CREATE. This destroys the old version, if
any, without warning. 

Privileges Required

A stored procedure or function  is a database object like a table. It resides in a schema,
and its  use is  controlled  by privileges.  To create  a  procedure  and it  compile  it   the
following conditions should be fulfilled.

 To create a users own procedure an user should have  CREATE PROCEDURE or
the CREATE ANY PROCEDURE system privilege. Same  privileges also apply
for creating  functions too.

 If a procedure is  in a schema that an user owns the user  must have the CREATE
ANY PROCEDURE system privilege. 

 You must have the object privileges necessary to perform all operations contained
in the procedure. You must have these privileges as a user, not through roles. If



your privileges change after you have created the procedure, the procedure may
no longer be executable. 

To enable others to use the procedure, grant them the EXECUTE privilege on it using the
SQL statement GRANT .When these users execute the procedure, they do so under your
privileges,  not  their  own. Therefore,  you do not  have to  grant them the privileges  to
perform these actions outside the control of the procedure,  which is a useful security
feature.  To enable  all  users  to  use  the procedure,  grant  EXECUTE to PUBLIC. The
following example permits all users to execute a procedure called show_product. 
GRANT EXECUTE ON show_product TO PUBLIC;

Of course, the public normally does not execute such a procedure directly. This statement
enables you to use the procedure in your PL/SQL code that is to be publicly executable.
If multiple users access the same procedure simultaneously, each gets his own instance.
This means that  the setting of variables and other activities  by different users do not
affect one another. 

Packages

A package is a group of related PL/SQL objects (variables, constants, types, and cursors)
and subprograms that  is  stored  in  the  database  as  a  unit.  Being a  database  object,  a
package  resides  in  a  schema,  and  its  use  is  controlled  by  privileges.  Among  its
differences  from regular  PL/SQL programs  are  that  a  package  as  such  does  not  do
anything.  It  is  a  collection  of  subprograms  and  objects,  at  least  some  of  which  are
accessible to applications outside of it. It is the subprograms in the package that contain
the executable code. A package has the following two parts: 

 The package specification is the public interface to the package. It declares all
objects  and  subprograms  that  are  to  be  accessible  from outside  the  package.
Packages do not take parameters, so these constitute the entire public interface. 

 The package body is the internal portion of the package. It contains all objects and
subprograms that are to be local to the package. It also contains definitions of the
public cursors and subprograms. The package specification declares but does not
define these.

One of the advantages of using packages is that the package specification is independent
of the body. You can change the body and, so long as it still matches the specification, no
changes to other code are needed, nor will any other references become invalid. 

Packages  cannot  be  nested,  but  they  can  call  one  another's  public  subprograms  and
reference one another's public objects. 

Instantiation of Packages



It is important to realize that a package is instantiated once for a given user session. That
is to say, the values of all variables and constants, as well as the contents and state of all
cursors, in a package, once set, persist for the duration of the session, even if you exit the
package. When you reenter the package, these objects retain the values and state they had
before, unless they are explicitly reinitialized. Of course, another user has another session
and therefore another set of values. Nonetheless, a global reinitialization of a package's
objects for you does not take place until you disconnect from the database. 

There is an exception, however. When one package calls another, execution of the second
has a dependency on the first. If the first is invalidated, for example because its creator
loses a privilege that the package requires, the second, while not necessarily invalidated,
becomes deinstantiated. That is to say, all its objects are reinitialized. 

Creating Packages

To  create  a  package,  you  use  the  SQL  statement  CREATE  PACKAGE  for  the
specification  and  CREATE  PACKAGE  BODY  for  the  body.  You  must  create  the
specification first. Sometimes, a package may consist of only public variables, types, and
constants, in which case no body is necessary. Generally, however, you use both parts. 

Creating the Package Specification The syntax of the CREATE PACKAGE statement
is as follows: 

CREATE [OR REPLACE] PACKAGE package_name IS

{PL/SQL declarations}

END;

The optional  OR REPLACE clause operates  just  as it  does for stored procedures,  as
explained  elsewhere  in  this  chapter.  The  PL/SQL declarations  are  as  outlined  under
DECLARE SECTION elsewhere in this chapter, except that the keyword DECLARE is
not  used  and  that  the  subprogram  and  cursor  declarations  are  incomplete.  For
subprograms, you provide only the name, parameters, and, in the case of functions, the
datatype of the return value. For cursors, provide the name and a new item called the
return type.  This  approach hides the implementation of these objects  from the public
while making the objects themselves accessible. 

The syntax for declaring a cursor with a return type is as follows: 

CURSOR c١ IS RETURN return_type;

The return type is always some sort of record type  that provides a description of the
cursor's output. The structure of this record is to mirror the structure of the cursor's rows.
You can specify it using any of the following: 



 A record subtype  previously defined and in  scope.  For  more  information,  see
"Records" elsewhere in this chapter. 

 A type inherited from such a record subtype using the %TYPE attribute. For more
information, see "Declaring Variables" elsewhere in this chapter. 

 A type inherited from a table, most likely the table the cursor queries, using the
%ROWTYPE attribute.  For more information,  see "Records" elsewhere in this
chapter. 

 A  type  inherited  from  a  cursor  using  the  %ROWTYPE  attribute.  For  more
information, see "Records" elsewhere in this chapter. 

Creating the Package Body To create the package body, use the CREATE PACKAGE
BODY statement. The syntax is as follows: 

CREATE [OR REPLACE] PACKAGE BODY package_name IS

{PL/SQL declarations}

END;

Since a package as such does not do anything, the PL/SQL code still consists only of a
DECLARE section with the keyword DECLARE omitted. It is the subprograms within
the package that contain the executable code.  Variables,  constants,  types,  and cursors
declared  directly  in  the  declare  section  have  a  global  scope  within  a  package  body.
Variables, constants, and types that are already declared in the package specification are
public and should not be declared again. 

Public  cursors  and  subprograms,  however,  must  be  declared  again  here,  as  their
declarations in the specification is incomplete. This time the declarations must include
the PL/SQL code (in the case of subprograms) or the query (in the case of cursors) that is
to be executed. For subprograms, the parameter list must match that given in the package
specification word for word .This means, for example, that you cannot specify a data type
directly in the specification and use the %TYPE attribute to specify it in the body. 

You can create an initialization section at the end of the package body. This is a body of
executable  code--chiefly assignments--enclosed  with the  keywords  BEGIN and END.
Use  this  to  initialize  constants  and  variables  that  are  global  to  the  package,  since
otherwise they could be initialized only within subprograms, and you have no control of
the  order  in  which  subprograms  are  called  by  outside  applications.  Initialization  is
performed only once per session. 

Overloading Subprograms

Within  a package,  subprogram names  need not  be unique,  even at  the same level  of
scope.  There  can  be  multiple  like-named  subprograms  in  the  same  declare  section,



provided that the parameters that they take differ in number, order, or datatype and that,
when the procedures are called, the values passed by the calling procedure (the actual
parameters) match or can be automatically converted to the datatypes specified in the
declaration (the formal parameters). 

The reason this is permitted is so you can overload subprograms. Overloading permits to
have several versions of a procedure that are conceptually similar but behave differently
with different parameters. 

Database Triggers

Triggers are blocks of PL/SQL code that execute automatically in response to events.
Database triggers reside in a database and respond to changes in  data. These triggers
need not  to be confused with application triggers. Database triggers are a technology that
superseded application triggers. 

 Triggers are created the way stored procedures and packages are created, by using text
editors and run them using SQL*Plus or Server Manager. A trigger is like a package in
that: 

 It takes no parameters as such. It refers to, responds to, and possibly affects the
data in a database.

 It cannot be directly called like a procedure. To fire (execute) a trigger, you must
make a change in a database to respond. 

Triggers can be classified in three ways: 

 INSERT  triggers,  UPDATE  triggers,  and  DELETE  triggers.  This  is  a
classification based on a statement to which a trigger responds. The categories are
not mutually exclusive, meaning one trigger can respond to any or all of these
statements.

 Row triggers and statement triggers. Any of the above statements can affect any
number  of  rows in  a  table  at  once.  A row trigger  is  fired  once for  each row
affected. A statement trigger is fired once for each statement, however many rows
it affects. 

 BEFORE triggers and AFTER triggers. This specifies whether the trigger is fired
before or after the data modification occurs.

 All  three  of  these  classifications  apply  to  all  triggers.   So  there  are,  for  example,
BEFORE DELETE OR INSERT statement triggers and AFTER UPDATE row triggers. 



Creating Triggers

The syntax of the CREATE TRIGGER statement is as follows: 

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE | AFTER

DELETE | INSERT | UPDATE [OF column_list]

ON table_name

[ FOR EACH ROW [ WHEN predicate ] ]

{PL/SQL block};

In the above, square brackets ([ ]) enclose optional elements. Vertical bars ( | ) indicate
that what precedes may be replaced by what follows. 

In other words, you must specify the following: 

 A trigger name. This is used to alter or drop the trigger. The trigger name must be
unique within the schema.

 BEFORE or AFTER. This specifies whether this is a BEFORE or AFTER trigger.

 INSERT, UPDATE, or DELETE. This specifies the type of statement that fires
the trigger. If it  is UPDATE, you optionally can specify a list of one or more
columns,  and  only  updates  to  those  columns  fire  the  trigger.  In  such  a  list,
separate the column names with commas and spaces. You may specify this clause
more than once for triggers that are to respond to multiple statements; if you do,
separate the occurrences with the keyword OR surrounded by white space. 

 ON table_name. This identifies the table with which the trigger is associated.

 PL/SQL Block.  This  is  an anonymous  PL/SQL block containing  the code the
trigger executes.

You optionally can specify the following: 

 OR REPLACE. This has the usual effect.

 FOR EACH ROW [WHEN predicate]. This identifies a trigger as a row trigger. If
omitted, it will be a statement trigger. Even if this clause is included, the WHEN
clause remains  optional.  The WHEN clause contains  a SQL  predicate  that  is
tested against each row the triggering statement alters. If the values in that row
make the predicate TRUE, the trigger is fired; else it is not. If the WHEN clause is
omitted, a trigger will  fire for each altered row. 



Here is an example: 

CREATE TRIGGER give_bonus

AFTER UPDATE OF sales

ON salespeople

FOR EACH ROW WHEN sales > ٨٠٠٠.٠٠

BEGIN

UPDATE salescommissions SET bonus = bonus + ١٥٠.٠٠;

END;

This  creates  a  row  trigger  called  give_bonus.  Every  time  the  sales  column  of  the
salespeople  table  is  updated,  the trigger  checks to  see if  it  is  over ٨٠٠٠.٠٠.  If  so,  it
executes  the  PL/SQL  block,  consisting  in  this  case  of  a  single  SQL statement  that
increments the bonus column in the salescommissions table by ١٥٠.٠٠. 

Privileges Required

To create a trigger in your own schema, you must have the CREATE TRIGGER system
privilege and one of the following must be true: 

 You own the table associated with a trigger.

 You have the ALTER privilege on the table associated with a trigger.

 You have the ALTER ANY TABLE system privilege.

To  create  a  trigger  in  another  user's  schema,  you  must  have  the  CREATE  ANY
TRIGGER system privilege. To create such a trigger, you precede the trigger name in the
CREATE TRIGGER statement with the name of the schema wherein it will reside, using
the conventional dot notation. 

Referring to Altered and Unaltered States

You can use the correlation variables OLD and NEW in the PL/SQL block to refer to
values in the table before and after the triggering statement had its effect. Simply precede
the column names with these variables using the dot notation. 

If these names are not suitable, you can define others using the REFERENCING clause
of the CREATE TRIGGER statement, which is omitted from the syntax diagram above
for the sake of simplicity.. 

 Enabling and Disabling Triggers



Just because a trigger exists does not mean it is  effective. If a trigger is disabled, it does
not fire. By default, all triggers are enabled when created, but you can disable a trigger
using the ALTER TRIGGER statement. To do this, a trigger must be in your schema, or
you must have the ALTER ANY TRIGGER system privilege.

Here is the syntax: 

ALTER TRIGGER trigger_name DISABLE;

Later you can enable the trigger again by issuing the same statement with ENABLE in
place of DISABLE. The ALTER TRIGGER statement does not alter the trigger in any
other way. To do that you must replace the trigger with a new version using CREATE
OR REPLACE TRIGGER.. 

Source: http://lambda.uta.edu/cse /spring /plsql.html٥٣٣١ ٩٨


	PL/SQL Overview
	Basic Structure and Syntax of PL/SQL
	The DECLARE Section
	Datatypes
	Declaring Variables
	Declaring Constants
	Defining Types
	Scope and Visibility
	Data Structures
	Exceptions
	Declaring Subprograms

	Assignments
	Flow Control
	IF Statements
	Basic Loops
	FOR Loops
	WHILE Loops
	GOTO Statements


	The EXCEPTION Section
	Declaring Exceptions
	Labeling Oracle Messages
	User-Defined Exceptions

	Handling Exceptions
	Privileges Required
	Packages
	Instantiation of Packages
	Creating Packages
	Overloading Subprograms


	Database Triggers
	Creating Triggers
	Privileges Required
	Referring to Altered and Unaltered States



