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Abstract 

Due to rapid digitization, the password management becomes a challenge. There are different 

passwords for different applications. Therefore, financial institutions are working on 

alternatives like biometric for user authentication. There is an increasing trend of using 

biometrics in Banking and financial industry. There are various security issues with biometrics. 

When password of a customer is compromised, it can be changed and systems security can be 

tightened to avoid future attacks. This is not the case with biometrics as biometrics of a person 

cannot change. Therefore, financial institutions must adopt state-of-the-art security practices 

to handle biometrics. There has been a tremendous rise in identity theft in recent years. 

Biometrics is an effective tool for seamless person authentication. The parameter 

characteristics can be anatomical or behavioural. Anatomical characteristics refer to iris, 

fingerprint, voice, face etc. Behavioural biometric parameters refer to movement, keystroke 

dynamics etc. The technological advancements have improved biometric handling in recent 

year. Hence, applications of biometrics have gained popularity and are frequently used in 

personal computers login, office access, airport access and other. The legacy authentication 

systems based on tokens or password are losing popularity as they can be lost or forgotten. The 

on-boarding of user for biometric system is called as enrolment. In enrolment process, the key 

parameters of a person are extracted from biometric data and stored as templates. At the time 

of user authentication, the parameters are extracted from the person and matched with the 

parameters in enrolled template using query technique. The comparison result decides for the 

success or rejection of a person for authentication. 

The adoption of finger vein biometrics has introduced a revolutionary approach to identity 

verification, promising heightened security and accuracy. We have developed a unique method 

for feature extraction from finger vein images, which significantly enhances the discriminative 

power of the biometric data. However, the stakes are high when it comes to safeguarding the 

stored templates. A compromise of finger vein templates can result in severe repercussions for 

both organizations and individuals, transcending mere financial losses and extending to 

potential breaches of sensitive data and personal privacy. 

In response to this challenge, we are applying a cutting-edge cancellability technique to secure 

the finger vein biometric template. By employing irreversible template transformation, our 

approach ensures that even if the stored template is compromised, it cannot be reverse-
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engineered to obtain the original finger vein pattern. This added layer of security complements 

the uniqueness of finger vein patterns and makes them highly reliable for identification 

purposes while mitigating the risks associated with template exposure. 

Given the immutable nature of biometric traits, once compromised, the damage to the system 

is irreversible. Consequently, it is imperative to institute robust and sophisticated template 

protection mechanisms that pre-emptively shield the biometric data from unauthorized access 

and potential breaches. Our research proposal seeks to address this critical concern by 

exploring advanced encryption techniques, biometric key generation, and secure template 

matching protocols to further fortify the security of finger vein templates throughout their 

lifecycle. 

Moreover, the applicability of these techniques in the banking system is of paramount 

importance, considering the sensitive nature of financial transactions. By integrating our 

proposed security measures seamlessly into the banking infrastructure, we aim to bolster the 

trust of both institutions and customers in the reliability and inviolability of finger vein 

biometrics. 

Ultimately, the successful implementation of these advanced security measures, combined with 

our novel feature extraction method, will not only protect the interests of organizations and 

individuals but also foster greater acceptance and widespread adoption of finger vein 

biometrics as a secure and privacy-conscious identity verification solution. 

Key words: Finger vein, Cancelable biometrics, Repeated Line Tracking (RLT), Multiline 

Neighbouring Relationship, Quantization, Biometric Template Protection (BTP) 
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CHAPTER-1 

INTRODUCTION  

1.1. Origin of the proposal  

 

Introduction to Biometrics 

Biometrics are the human characteristics trait that are unique in nature and are helpful in 

identification. Biometrics refer to the biological traits of humans such as finger print, finger 

vein, iris, palm, voice, etc. There is a separate field of study related to biometrics in computer 

science. There is an ongoing demand of authentication based on the biometrics of the user 

which does not require a password or a string to remember and is always available with the 

user. With these solutions, companies are building products around the biometrics and are able 

to provide more secure authentication. 

 

Advantages 

 

Following are the major benefits of using the biomet4cis authentication in various 

authentication-based accesses: 

 

1. Security Enhancement – Since biometric is such a trait that the user always carries 

with himself or herself, the act of these getting stolen is rarely possible. The cyber 

criminals find it very hard to duplicate the biometrics to gain access. This is much 

secure than the traditional password-based accesses which can be easily forgotten, lost 

or brute forced. 

 

2. Accurate authentication– Biometrics are the most authentic way of providing the 

access to any system since the biometrics can be helpful to uniquely identify the 

individual. In billions of populations, biometrics are such miracles of nature which are 

unique in nature and which provide almost 100% accuracy. 

 

3. Flexibility and Convenience – Biometrics provide better flexibility and ease of access 

as the users do not have to provide passwords again and again for multiple access. The 
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authentication is really fast and accurate and provides ease to the user. Typing the 

password again and again will be cumbersome.  

 

4. Scalability – Biometrics offer such a scalable solution that it can be integrated with 

multiple products and can provide single access to all of them.  

 

Disadvantages 

With great technological revolution, also comes some disadvantages or challenges which are 

highlighted below: 

 

1. Storage Issues: This is a major challenge to the scientist to provide the storage of finger 

or vein pattern for all the users and to provide encryption and secure access. Huge 

databases and encryption techniques are required to keep this data safe and provide 

quick access at the same time. 

 

2. Scanner Compatibility: It is also very important to understand that less technology 

exists in market which is open source for the other developers to build their products. 

Only a few patented technologies are working in monopoly and it is not always that all 

the scanner works perfectly with the users captured patterns. Compatibility issues 

remain a major challenge to upscale this technology. 

 

3. False positives: Although the patterns of biometrics are unique in nature, there still are 

chances that biometrics can provide false positives and allow the wrong person to enter 

with your credentials and access your information. 

 

Cancellable Biometrics 

 

The concept of cancellable biometrics was necessary to avoid the situations of compromise of 

the patterns stored. Although it is very rare but still if the traits are lost, then the user is 

compromised forever. Therefore, a concept of cancellable biometric [24] was introduced to 

make a biometric template can be cancelled and be revoked like a password, as well as being 

unique to every application.  The basic aim is to store a hashed version of cancellable 

biometrics which is linked with multiple modals so that a modal can be cancelled and reissued 

to the user in case of the compromise. The existing works in the technology involves the 
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distortion based on the no reversible matrix operations and Fourier transformations. The greater 

the size of the matrix the more difficult it is to form the original features for compromise. 

Choosing Finger Vein for Research work 

 

There are very few works in the industry on the finger vein and its cancellability [24]. Finger 

vein is emerging as the most promising technology due to its non-invasive nature and better 

security over finger print. The idea behind this is that the finger vein pattern is always unique. 

The finger prints can be forged and be compromised over time. This drawback is handled with 

finger vein authentication which is almost impossible to compromise because the pattern is 

hidden deep inside and can only be fetched from the authorised scanners. 

 

We need to analyse the combination of finger vein and its cancellability and take forward the 

research and frameworks already developed in the biometric world. Since the finger vein is 

new and more secure than traditional biometrics, we need to analyse the already existing 

frameworks, strategies, and methodologies which have produced disruptive results in 

comparison to the finger vein. 

 

1.2. Definition of the problem  

 

There is a lot to explore in the field of finger vein biometrics. There is a need to explore its 

potential use as an alternative to the presently available authentication techniques. Finger vein 

data is PII (Personal Identifiable Information) and is very crucial for the organization. It is a 

big challenge to extract the biometric features out of the finger vein images and securely store 

them. In the event of any unforeseen security breach or compromise of stored data, what can 

be done? There is a need to explore the cancellable technique to apply it to finger vein 

biometrics.  
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CHAPTER-2 

REVIEW OF LITERATURE 
 

Recently, various proposals and studies have been published regarding finger vein, finger print 

and cancellable biometric. Few of them have been discussed below for reference of literature 

review. 

In the context of telemedicine and real-time health monitoring systems, authors [1] have 

discussed the function of finger vein authentication systems. Wireless body area sensor 

networks must be developed for modern telemedicine. Protected health information is currently 

worth the most on the black market, and attackers and hackers are rapidly becoming aware of 

the potential of hacking telemedicine systems. Security is still a very difficult problem to 

address. One of the key areas for pervasive computing use is intelligent home settings. The two 

most crucial concerns in the remote monitoring and control of intelligent home environments 

for clients and servers in telemedicine architecture are security and privacy. A recently studied 

biometric method leverages the finger vein pattern for personal authentication. The paper 

identifies a few crucial areas for further research, such as finger vein biometric verification 

systems in telemedicine settings. An updated substructure of verification methods for sensor-

based telemedicine architectures is what this study seeks to give. Studies that attempted to 

develop finger vein verification applications and software frameworks were investigated. 

Additionally, finger vein datasets from earlier investigations were highlighted. They 

discovered that some domains have gotten more study interest than others. These areas and 

functions give a clear picture of the gaps in terms of development and evaluation and reflect 

the sort of studies on finger vein biometric verification. Researchers have discussed the 

difficulties they encountered, and many have offered suggestions for overcoming these 

difficulties now and in the future. This encourages other researchers to identify possibilities 

and find answers by conducting additional study in this area.  

To comprehensively analyze and develop a coherent taxonomy of the current research on finger 

vein biometric identification in medical systems, a review is undertaken [2]. In this study, 

papers containing the terms "biometrics," "finger veins," and "verification" in combination, as 

well as any of their variations, are analysed from various databases including Web of Science, 

ScienceDirect and IEEE Xplore. The final collection of papers on authentication models based 
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on finger vein biometrics are separated in systems with hardware components and with 

software components. Software development attempts are mentioned in the first category. The 

findings from the experiments, as well as the frameworks, algorithms, and techniques that work 

well, are provided. Additionally, the lessons learned from carrying out these investigations are 

explored. Hardware development attempts are detailed in the second category. This paper adds 

to the body of literature by offering a thorough analysis of workable solutions and knowledge 

gaps, enabling researchers and developers to advance the development of medical 

authentication system based on finger vein biometrics.  

The authors suggested that the background data in images of finger veins be replaced by 

uniform grey data, and the effects on (i) achieved lossless compression performance and (ii) 

obtained recognition accuracy in case of lossy compression are assessed using 2 public datasets 

[3]. According to the findings, replacing the original background with a uniform one is 

unquestionably advantageous for lossless compression since, after smoothing out certain areas, 

replacement of the background improves recognition performance across all settings. 

According to this paper's experimental compression evaluations, it is advantageous to replace 

the original background of finger vein imagery with a uniform background of grey values. 

These effects are a result of sharp edges created when adding the uniform backdrop, which are 

compression artifacts at the border between finger tissue and background. More reliable 

outcomes are obtained by enhancing the boundary smoothness. They highlighted BPG's 

remarkable performance on uniform grey background data, which was undoubtedly made 

possible by the algorithm's superior intra-prediction.  

Finger vein images are utilised to train the features of the CAE, which then uses the learnt 

feature codes to classify the finger veins. Experimental research employing the proposed 

technique and the FV USM and SDUMLA datasets has demonstrated that the proposed model 

performs better and operates more precisely and productively [4]. The FVUSM's EER 

increases from 0.16 to 0.12 percent. SDUMLA's EER increases from 6.28% to 0.21%. The 

FVUSM dataset results don't show much real improvement. However, there has been a major 

improvement in the SDUMLA database, and the EER result has been significantly reduced. 

The information contained in the photographs of the finger veins has been further reduced, 

which improves the practicality of the suggested method.  

Compared to the current biometric technology, finger vein offers greater security and ease [5]. 

The performance of the equipment or its surroundings, however, may affect how accurate it is. 
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An algorithm has been suggested by the authors to enhance finger vein recognition systems. 

The maximum curvature method with MMCBNU 6000 was used in this paper to extract the 

Finger vein, and minutiae extraction was used to extract features. They use median filtering 

and picture dilation to lessen noise. Configure the filter bank to avoid cutting off the designated 

pulse when using the median filter. A block measuring 3 by 3 composes the filter bank. They 

eliminate the image noise and fill the finger slot by employing this technique. The MHD value 

improves as the Feature points decreases. Check the values with biometric authentication 

factors FAR, FRR, and EER. The FAR levels have improved. The EER of 3.21% is achieved, 

which shows the better performance than the existing vein recognition algorithms.  

Another research employs an adaptive thresholding method and a binary robust invariant 

elementary feature from accelerated segment test feature points to propose a novel finger-vein 

recognition system [6]. Then, a second stage of verification is carried out using the suggested 

multi-image quality assessments (MQA). With the help of a strong feature and a rigorous MQA 

process, this recognition structure enables effective feature point matching. Because of this, the 

proposed method not only speeds up system computations, but also proves itself superior to 

earlier related studies. This paper proposes an enhanced biometric recognition system. A 

feature point-based approach, a POHE algorithm, and a MQA voting mechanism are all 

included in the now-proposed hierarchical verification system. The MQA voting method then 

offers a reliable identification as a second stage of verification. The optimal values for EER 

are, according to the experimental findings utilizing open-access databases, respectively 

0.13%. The EER indices unmistakably demonstrate that the proposed strategy outperforms the 

cutting-edge systems. Liveness detection is a crucial spoofing defense for further development. 

It is necessary to confirm that the device can detect blood flow velocity using high frame rate, 

other light spectrum sensors.  

Authors [7] have also suggested to solve the problem of unsatisfactory vein images. The 

suggested approach will fully utilize the labels before improving results. They contrast its 

performance with a number of well-known loss functions, including triplet loss and softmax 

loss. The MMCBNU 6000 and FV-USM datasets were used in the experiments, and the 

findings demonstrate that the proposed loss function not only minimizes error rates, is quicker 

to compute, but also prevents overfitting. Convolutional Neural Networks are noted for taking 

a long time to train. The length of the training phase increases with the number of layers in the 

network. Center loss was used in the model to obtain outstanding outcomes by maximizing the 
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distance between classes and minimizing the distance within classes. They also suggested an 

enhanced regularization to lessen the chance of overfitting. The effectiveness of the proper 

training tactics in identifying finger veins has been experimentally verified. According to 

experiments, the suggested method's accuracy in the MMCBNU 6000 and FV USM datasets 

can be as high as 99.05% and 97.95%, respectively, with equivalent error rates (EER) of 

0.503% and 1.07%. 

In order to recognize finger veins, the research suggests a brand-new feature learning technique 

termed the discriminative binary descriptor (DBD) [8]. By including our discriminative 

objective function and MDPDV into feature learning, it improves the performance of 

recognizing finger veins.  

Deep learning is frequently employed in the field of biometrics, however in order to create a 

complex model that performs effectively, a lot of tagged image data is needed [9]. In terms of 

security and privacy, finger vein recognition outperforms traditional biometric techniques by a 

wide margin. However, finger vein-related datasets are scarce. This work offers a method for 

creating finger vein datasets using GAN as a solution to this issue.  

Due to their high safety and stability qualities, finger vein features have drawn a lot of attention 

and are progressively finding use in a variety of areas. However, research has demonstrated 

that convolutional neural network-based finger vein recognition systems pose significant 

security issues [10]. Criminals may perform improper operations on the recognition system's 

database or results in order to gain access to some of the system's user information, which poses 

a serious security risk to the original vein data. In this research, they design a full finger vein 

recognition system with template protection as well as a finger vein picture encryption scheme 

based on the RSA algorithm. The goal of this system is to provide a finger vein feature 

recognition system that protects the user's finger vein template and improves the security of 

user biometric data. On 4 open data sets, they conduct a series of extensive tests. They intend 

to carry on their efforts in the following three areas in their next work. In order to increase the 

finger vein recognition system's representational capability and recognition performance, they 

will first try to employ the approach outlined in DARTS. Thirdly, they will think about 

safeguarding biometric templates and improving the system's defense against adversarial 

sample attacks. 
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The finger-vein is a perfect biometric feature for personal authentication because of its strength 

and individuality [11]. The two components of typical finger-vein authentication systems are 

feature extraction and feature matching. The inaccuracies in the infrared device's imaging of 

finger veins are brought on by changes in temperature, unreliable lighting, and deformed 

fingers. The retrieved characteristics are unsatisfactory and challenging to match since 

uncertainties lead to severe artefacts. They model the extracted characteristics as a Gaussian 

Mixture Model in an effort to solve the matching issue (GMM). Given two finger-vein feature 

maps, the proposed technique first models the inputs as GMM using the normal distribution 

transform, then uses gradient descent to minimize the distance between the two GMMs, and 

finally outputs the likelihood that the two feature maps are from the same individual. They test 

the performance increase using two different types of finger-vein features—finger-vein 

trajectory and finger-vein skeleton—to demonstrate its superiority over existing feature 

matching approaches. The proposed method is more precise than the traditional methods, 

according to experimental findings on the RATE dataset.  

The premise is that verification systems arbitrarily reject low-quality pictures because they are 

led by the fundamental objective of evaluating the biometric quality, which is the minimizing 

of verification error [12]. Based on this assumption, the photographs are automatically divided 

into low-quality and high-quality categories. They then train a DNN to predict image quality 

using the obtained dataset. This study presented a unique method for predicting finger-vein 

picture quality through the learning of a deep feature representation. 

To boost user-friendliness and lower the cost of system implementation, researchers take a 

finger and use all of its modalities, including fingerprint, finger-vein, and finger-knuckle [13]. 

The contactless fingerprint, finger vein, and finger knuckle images are all captured by just three 

cameras in the proposed system. They also provide a method to allow the machine to operate 

in identification mode. Experiments on well-known databases show that the recognition 

accuracy of our suggested approach is greatly increased. A low-cost, dependable imaging 

device that can capture contactless fingerprint, finger vein, and finger knuckle prints 

concurrently was also demonstrated. Only three cameras were included in the proposed system 

for picture capture. They could successfully merge 2D and 3D fingerprints, 2D and 3D finger 

veins, and 2D and 3D finger knuckle prints. The tests performed on well-known databases 

demonstrate that our system can handle the issue of finger rotation while improving recognition 

accuracy. They plan to enhance and optimize our system in subsequent work. Due of the 
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difficulty in reproducing, spoofing, and/or stealing the electrocardiogram (ECG), they will also 

add it as a biometric attribute. 

Some authors [14] have studied the issue of recognition performance degradation caused by 

finger positional variation, misalignment, and shading from uneven illumination. Because 

different images are produced by different pixel values, they can be sensitive to noise. 

Additionally, the trained network's full layers cannot be used for computing the distance 

between feature vectors, hence this method is less accurate than one that uses different images. 

To address the challenges associated with noise and utilizing the entire network, this study 

proposes a method that uses composite finger-vein images as input to a deep, densely-

connected convolutional network (DenseNet). The experiments were conducted using the 

Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein database 

and The Hong Kong Polytechnic University finger image database (version 1). The results 

demonstrate that the proposed method outperforms existing techniques. To compensate for 

misalignment between enrolled and input images, a shift matching method was employed. 

Instead of using a difference image that is sensitive to noise, a 3-channel composite image was 

utilized as the input to the CNN. The study confirms that the recognition accuracy is higher 

when using the composite images compared to using different images. Furthermore, the 

composite image exhibits greater resilience against noise when tested with noisy images. 

Evaluation of different CNN models using two open databases revealed that the DenseNet-161 

model, combined with the shift matching approach, achieved the highest recognition accuracy. 

According to the study's findings, a significant amount of misalignment and a lack of shading 

clarity were present in the majority of cases of mistaken rejection. In false acceptance cases, 

vein patterns were partially captured and there were issues of similarity in the pat- terns and 

shading. A desktop computer and an embedded system were used to test processing speed, 

confirming the adaptability of our method to different settings. The number of layers and 

transition layers in the DenseNet will be reduced in subsequent research in an effort to increase 

processing speed while retaining recognition accuracy. The deep CNN model and shift 

matching would also be used on palm- and hand-vein images in addition to finger- and palm-

print images. 

Following a critical comparative study of the emphasized methodologies, researchers present 

a few novel discoveries [15]. Comparative studies show that finger vein recognition techniques 

are accurate enough. This research offered a thorough analysis of traditional, machine learning- 
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and deep learning-based methods for identifying finger veins. The approaches for ROI 

extraction and picture enhancement in image preprocessing were examined. Additionally, four 

categories of traditional feature extraction techniques—vein-based, local binary-based, 

dimensionality-based, and minutiae-based techniques—were identified and described in depth. 

Both the distance-based matching approaches and the classifier-based matching methods were 

examples for the matching stage. They also contrasted established and recently created deep 

learning finger vein detection techniques. Deep learning algorithms outperformed conventional 

finger vein recognition methods, nonetheless, by a wide margin. Furthermore, to recognize 

spoof attacks, a high recognition spoof detection finger vein identification method is required. 

Additionally, the identification of finger veins benefits greatly from machine learning 

techniques. The integration of deep learning techniques into FVR has the potential to improve 

recognition performance generally. In conclusion, the authors hope that this study will serve as 

a valuable springboard for fresh ideas and a unifying foundation for several advantages in the 

field of finger vein authentication and identification.  

The vein network calibration used in matching uses the venous backbone to compensate for 

finger displacements [16]. The suggested elastic matching method is used to compare two 

calibrated vein networks, and the degree of overlap between their respective vein backbones is 

then integrated to recompute the similarity. The efficiency of the suggested architecture has 

been confirmed by extensive tests on two open finger vein databases. In addition to proposing 

a useful framework for finger vein recognition, this article brought anatomical structure 

analysis to finger vein network extraction and matching.  

Another research on CNN for better quality images has been discussed in another paper [17]. 

The main goal of the work is to produce a consistent reaction with correct performance while 

taking into account finger vein photos of different quality. The suggested approach is evaluated 

on a dataset that is thought to be publically accessible, and the published experiment results 

demonstrate that high identification accuracy may be attained using an efficient training and 

testing procedure. A convolution-neural-network (CNN) based technique is proposed in this 

paper that can train more quickly and identify finger veins regardless of image quality and 

environmental factors. The acquired findings from experimental research using a dataset that 

was thought to be publicly available demonstrate that the suggested method may achieve 

identification accuracy more than 95%, or rank-1. Large datasets can be used for more study, 

and using efficient training and testing techniques, accuracy can be increased. 
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In this study [18], the performance of vein minutiae recognition on three publicly available 

databases is assessed using two commercial and two freely available fingerprint comparison 

tools. The findings strongly suggest that minutiae-based comparison technology from 

fingerprint identification can be employed to identify finger veins and is capable of competing 

with and even outperforming traditional correlation-based techniques used in this sector. With 

this technique, vein recognition on MoC devices is made possible. This study demonstrates the 

viability of vein recognition for Match-on-Card (MoC) technology. In order to employ 

traditional minutiae-based fingerprint comparison tools for the recognition task, minutiae 

points are extracted from vein pictures and stored in a standard manner. This is an essential 

initial step for vein recognition for MoC systems to be seamlessly integrated. The utilization 

of two cutting-edge commercial and openly accessible minutiae-based fingerprint comparison 

software tools. The findings demonstrate that in terms of recognition performance, minutiae-

based techniques can not only match but even surpass conventional correlation-based and 

CNN-based approaches. 

In this study [19], a CNN model was constructed using the pre-trained VGG-16 model, Adam 

optimization, and categorical cross-entropy loss function. Techniques such as image 

augmentation and dropout were employed to prevent overfitting. Various fusion techniques 

were explored to evaluate the impact of CNN model fusion on recognition performance, 

including feature and score level fusion. The effectiveness of the proposed method was 

empirically evaluated using the SDUMLA-HMT dataset. The study introduces a multimodal 

biometric model for user identification, combining iris, face, and finger vein features with two 

fusion algorithms. This research is the first known attempt to apply deep learning methods to 

a multimodal biometric model encompassing these three traits. Additionally, the study 

examines a multimodal identification biometric system incorporating the finger vein trait, 

which has not been extensively studied before. Three separate CNNs were utilized in the 

proposed model to identify each attribute.  

They [20] gather a dataset of finger vein images in video format from 100 people over the 

course of four different exposure times to test the suggested methodology. The acquisition 

module was created using inexpensive sensors and was built to allow for unfettered hand 

movement, which greatly increased user comfort during enrolment and recognition. A database 

of on-the-fly hand acquisitions from 100 subjects has been compiled. Multiple cameras have 

been employed, each with a distinct exposure period to capture the hand's dynamic movement 
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over the sensors. The suggested method takes advantage of the temporal behavior of the 

moving hand over the sensors as well as the photos taken at various exposure durations. In both 

cases, deep learning techniques have been employed.  

The major goal of the research [21] is to present a deep-learning technique for finger-vein 

recognition that can perform consistently and extremely well when dealing with photos of 

varying quality. The broad set of experiments that have been published demonstrate that the 

accuracy that can be achieved using the suggested approach can exceed identification rate of 

ninety five percent for each of the databases that have been taken into consideration. In this 

study, they put forth a CNN-based finger-vein identification system that can function 

effectively regardless of the surrounding environment. They have offered a comprehensive 

summary of the experimental tests performed on the four widely used and available databases. 

The collected findings demonstrate that our suggested CNN architecture can produce rank-1 

identification accuracy values more than 95% for all four datasets. The current study is one of 

the first in-depth analyses of a finger-vein-based biometric identification system using more 

than two publicly available databases, and it aims to evaluate the performance of the suggested 

network under various conditions of image quality while requiring the least amount of human 

intervention. Additionally, it is evident that as more training photos are used, the suggested 

network's identification accuracy considerably improves.  

Within a specified timeframe, authors [22] have explored the stability of finger veins (four 

years). To do this, a reliable database for stability was built, and all outside influences on finger-

vein features—such as buying hardware, user behaviour, and ambient factors—were totally 

eliminated. They then proposed a steady-state model of finger-vein features, demonstrating 

that each particular finger has a stable steady state to which all of its finger-vein images would 

appropriately converge, regardless of time. On the basis of our 5-year/200,000-finger data set, 

experiments have been carried out. Additionally, findings from both real and fraudulent 

matches show that the model is solidly supported. This generic steady-state model offers a 

standard way to assess the stability of other kinds of biometric features. They suggest the first 

investigation into the stability of finger-vein features in this paper. Data preparation, steady-

state model development, and model validation on a particular dataset comprise the bulk of our 

effort. We have created a useful dataset that spans the years 2010 and 2015 and contains finger-

vein photos from young, healthy users between the ages of 16 and 25. For the stability 

investigation, they removed the significant irrelevant external impact elements (such as 
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illumination variation, posture changes, and some situational factors). They developed a 

steady-state model in this study with three key components: systematic stability, interval 

stability, and convergence stability. The results on the selected dataset provide strong support 

for their steady-state model and the notion that it proposes. The outcomes also demonstrated 

that finger-vein characteristics may be guaranteed to remain stable for at least four years. 

Additionally, some significant steady-state model characteristics (such as the model 

definition's converging speed parameters) offer a way to quantify the stability level of finger-

vein or other types of biometric features. 

To solve the problems of illumination variance and image misalignment, research has been 

done on multimodal biometric systems that can concurrently recognise fingerprints and finger 

veins [23]. However, because these techniques for identifying people rely on hand-crafted 

features, they have some limitations in terms of performance enhancement. In this study, deep 

convolutional neural network (CNN)-based multimodal finger-vein and finger shape 

biometrics were proposed. The following provides information on what they accomplished, 

their scientific contributions, the significance of their work, and the ways in which our results 

deviate from the state-of-the-art.  

In another paper [24], a cancellable finger-vein based bio-cryptosystem has been presented by 

the authors, which can both authenticate users and encrypt private health information using a 

biometric cryptographic method. System security is further increased by the use of cancellable 

biometrics. The validity of the suggested scheme is demonstrated by the experimental findings 

and security analysis. Biometric authentication technologies have gained popularity as the 

primary method of identity authentication in the healthcare industry as a result of its benefits. 

In this study, the researchers propose a novel cancellable finger-vein biometric system 

integrated with a smart card, specifically designed for the healthcare industry. This technology 

offers both authentication and data encryption for sensitive healthcare information, which is a 

unique feature not found in existing healthcare biometric systems. Storing the biometric 

template and sensitive data on the smart card ensures that information remains secure during 

data exchange or template transformation, as the biometric data never leaves the card. The use 

of cancellable biometrics further enhances the system's security, providing an additional layer 

of protection. 

Edge devices, such as smart cameras, are able to recognise and monitor people using artificial 

intelligence (AI) [25]. Edge biometrics is a key use of machine/deep learning as a driver behind 
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AI. Edge biometric systems that use machine learning or deep learning perform better than 

their traditional counterparts. Convolutional neural networks, for example, are invertible, 

according to studies, which means that adversaries can learn some knowledge about the initial 

inputs/templates. Because the biometric information contained in the original (raw) templates 

cannot be changed or reset, this information leakage is intolerable for biometric systems. Once 

compromised, they are irretrievably gone. Therefore, how to prevent original biometric 

templates from being attacked through inverting deep neural networks is a pressing but 

unsolved issue for deep learning based biometric recognition. To address the issue, another 

paper discuses a novel biometric template protection algorithm using the binary decision 

diagram (BDD) for deep learning-based finger-vein biometric systems. The suggested 

technique may produce a new, non-invertible version of the original finger-vein template, 

which is then stacked with an artificial neural network to create the BDD-ML-ELM, a finger-

vein recognition system that protects privacy. Even if its converted version is flawed, the 

suggested BDD-ML-ELM ensures the security of the original finger-vein template. By simply 

altering the user-specific keys, the changed template can be revoked and replaced with a fresh 

copy if it becomes hacked. The size of the user-specific keys is reduced and thus less storage 

space is needed, which is advantageous for edge devices with restricted resources. This is 

accomplished by segmenting the lengthy binary-valued feature vector into short segments. The 

experimental findings demonstrate that the suggested BDD-ML-ELM achieves a good 

compromise between security and recognition precision. Our next work will look into ways to 

increase the recognition accuracy of edge biometric systems based on deep learning while 

enforcing template protection.  

Authors [26] have tried to bring out constraints in the existing CNN based image enhancements 

technique. In this research, as the first attempt in this field, they present a unique method for 

finger vein extraction and verification called FV-GAN that is based on generative adversarial 

network (GAN). In this paper [26], they proposed a CycleGAN-based pattern extraction model 

called FV-GAN for finger vein verification. The FV-GAN framework was created to extract 

the vein patterns from photos of finger veins and estimate the likelihood that pixels in an image 

will be veins or background by learning a deep pattern representation. According to 

experimental findings, FV-GAN can reliably extract vein patterns and greatly enhance 

verification performance in terms of accuracy and EER, proving the value and effectiveness of 

adversarial training. To further enhance the effectiveness of finger vein verification, they intend 

to look into the following intriguing issues in the future. 
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Initially, a comprehensive examination of the finger vein imaging technique and the 

characteristics of the captured images is provided [27]. This analysis aims to demonstrate how 

the intensity distribution can be extracted as a soft biometric feature for recognition. Then, for 

intensity distribution feature extraction, three extraction algorithms for soft biometric trait and 

two methods for extracting background of finger vein are suggested. In order to address the 

dimension discrepancy, a hybrid matching technique is finally developed. In the past, the 

majority of finger vein recognition research has concentrated exclusively on the textural feature 

of the veins, paying little attention to the intensity distribution in the backdrop or even labelling 

it as noise. The idea of finger vein imaging is examined in this study, along with the image's 

properties, and a soft biometric trait extraction algorithm is suggested. First, ILS and GB are 

used to extract the background layer without the finger vein texture. Then, three soft biometric 

features are used to define the intensity distribution in the background layer. 

The effectiveness of the system is negatively impacted by both of these issues. Generally 

speaking, current systems are more sensitive to finger positioning fluctuations, especially those 

brought on by pitch and roll motions [28]. Despite significant efforts to address it in recent 

years, this issue still presents a difficulty. The authors have proposed an entirely new system 

to address the aforementioned problems. This research introduces a full-view 3D finger vein 

verification system that overcomes the limitations of conventional systems. By utilizing three 

cameras positioned in an equilateral triangle, it captures comprehensive vein pattern 

information across the entire finger. This approach incorporates both 2D images and 3D 

geometric features, allowing for accurate reconstruction of the 3D finger vein structure. This 

innovative system represents the first instance of creating full-view 3D finger vein structures 

from three 2D photos. In order to verify 3D finger veins, they then devise a focused feature 

extraction and matching approach. Finally, they combine the finger's 3D geometric properties 

and texture features to further boost the system's performance. The outcomes of several studies 

conclusively show that the proposed 3D finger vein verification system not only outperforms 

conventional 2D finger vein verification systems in terms of verification performance but also 

has higher potential, especially.  

The deformation tolerance of minutia-based finger vein recognition has been studied by 

authors, yet issues still exist: One minute detail is checked with every minute detail from every 

other image during matching, which takes time and can result in false pairings [29]. Two 

minutiae details are taken from some finger vein photos are small in amount. To tackle these 
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challenges, this study introduces a zone-based minutia matching strategy that merges 

traditional region-of-interest (ROI) based approach with minutia matching. To assure the 

quantity of the retrieved minutiae, they first extract minutiae from each block of segmented 

images. Second, a sensible neighbourhood zone's minutiae are chosen for matching, which to 

some part eliminates erroneous pairings and eliminates pointless matches. The suggested 

matching procedure is more reliable and parameter-free while performing minutia matching 

than conventional techniques. Numerous tests show that the suggested technique is reliable and 

effective.  

The authors [30] partition the original finger vein images into structure and noise components, 

representing the levels of blurriness and the distribution of noise respectively, using total 

variation (TV) regularization first. Second, structure and noise data are encoded in the 

decomposed components using a block local binary pattern (LBP) descriptor. Finally, they 

employ a cascaded support vector machine (SVM) model for classification, which successfully 

identifies finger vein presentation attacks. They created a brand-new finger vein presentation 

attack database to gauge the effectiveness of our strategy. Our solution clearly outperforms 

state-of-the-art methods, according to extensive experimental results collected from two finger 

vein presentation assault databases and a palm vein presentation attack database. In this study, 

they put out a brand-new technique for treating finger vein PAD dubbed TV-LBP. We believe 

that this is the first time that the blurriness levels and noise distributions of authentic and fake 

photos have been considered as distinct properties. They discovered that they may extract 

discriminative features as PAD criteria as a result.  

For the purpose of identifying finger veins, some writers have examined an adaptive-learning 

Gabor filter. In their approach, the authors [31] utilize a combination of Gabor filters and deep 

neural networks. They employ the Gabor filter to calculate the gradient of the filter's parameters 

based on the objective function, and then refine these parameters through back-propagation. 

By using this approach, they not only choose the most suitable and efficient parameters of 

Gabor filter to create the filter banks, but they also take into account how those parameters 

relate to one another. Finally, they conduct tests using four open datasets of finger veins. 

Experimental findings show that our method performs better than cutting-edge methods in 

classifying finger veins.  

Conventional methods for extracting regions of interest (ROI) from finger veins often rely on 

techniques such as edge detection and sliding window identification of joint lines [32]. These 
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methods typically require the setting of a predetermined threshold, which involves adjusting 

multiple parameters. The derived results are not precise enough when there are significant 

variations in illumination or poor image quality. A defined operator pattern and a small number 

of extracted feature patterns are additional features of the current feature extraction method. 

As a result, a lot of useful feature information is lost. The efficiency of the innovation points 

of the multi-task model combined with several sub-tasks is demonstrated by the comparison 

with the single task model. Finally, it thoroughly assesses the applicability of the model in this 

work in comparison to the existing approaches on the EER index. 

After study related literature in this field, we could identify the objectives of the research. The 

objectives are as: 

 

1. Extraction of finger vein features using a Repeated Line Tracking algorithm. 

2. Using a multiline neighbouring relation generation technique, apply cancelability to finger 

vein features.   

3. Experimental setup using benchmark databases. 

4. Results and analysis on parameters like accuracy, revocability and security analysis.  
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CHAPTER-3 

FEATURES EXTRACTION AND CANCELABILITY 
 

On analysis of related literature, we have identified Repeated Line Tracking algorithm for 

feature extraction from finger vein images.  

Repeated Line Tracking Algorithm for Finger Vein Features Extraction 

The minutiae detection algorithm used in this approach relies on ridge line following. Ridge 

line following involves identifying the local darkest position in the cross-sectional profiles. 

While this method works effectively when the ridge is clearly visible, it is not suitable for finger 

vein images due to their lack of clarity. 

The Repeated Line Tracking algorithm described in [35] addresses the aforementioned issues. 

This method utilizes line tracking, starting from various positions, to identify local dark lines 

in the finger vein image. The tracking process involves moving pixel by pixel along the lines. 

In cases where a dark line is not detectable, a new tracking operation begins from another 

position. By repeatedly executing these local line tracking operations, all the dark lines in the 

image can be tracked. Ultimately, the overlapping loci of the lines provide the statistical pattern 

of the finger veins. The repeated tracking operations contribute to emphasizing the dark lines 

while minimizing the emphasis on noise, resulting in robust line extraction. Additionally, 

reducing the number of tracking operations and spatially reducing the pattern help reduce 

computational costs. 

Some of the available databases (that can be utilized to apply RLT algorithm) are:  
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Figure 1.  Finger vein databases available for public use [34] 

Some of the available finger vein databases available for public use is displayed in Figure 1. 

We were able to gain access to three databases, namely the UTFV finger vein database, The 

Hong Kong Polytechnic University finger vein image database, and the Finger Vein USM (FV-

USM) Database. 

3.1 Features Extraction using RLT Algorithm (The University of Twente Finger Vascular 

Pattern (UTFVP) Database) 

The steps used for experimental and result purpose are as: 

a) Using an input image from database, grey value of every pixel is captured in text file. 

b) Create histogram of the input image grey values with grey value on x-axis (0-256) and 

frequency of pixels grey values are on y-axis. 

c) Apply repeated line tracking (RLT) algorithm on the input image.  

d) Capture pixel values of every pixel after applying RLT on the image in text file. 

e) Create histogram after applying RLT with grey value on x-axis (0-256) and frequency 

of pixels grey value on y-axis. 

f) Binarization of the RLT image with a particular threshold. Values less than threshold 

are converted into 0 (Black) and values greater than threshold is converted into 255 

(white). 

g) The set of white pixels is considered as the finger vein features.  
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We have executed steps b to step g on every image of the database using different threshold. 

Initially, we have used threshold 150, 155, 160, 165 and 170.  

On analysing output files of different threshold limits, it has been observed that the best results 

and binarized image is expected to get from threshold 151 and 155. The best results mean 

significant number of white pixels (features) and less noise in binarized image with clear view 

of the vein patterns. 

Therefore, we have narrow down further and generated output for the UTVF database using 

threshold 151, 152, 153 and 154. By doing this, we have output results on complete UTVF 

database for threshold values 151, 152, 153, 154 and 155.  

The source code is in C++ and is using opencv library.  

Input Image and Image after applying Repeated Line Tracking (RLT) on UTVF 

database:  

Input Finger Vein Image Image after applying RLT on Input Image 

 
 Figure 2. Input Image (UTVF Database) 

 

 
Figure 3. Output Image after applying RLT 

on the input image (UTVF Database) 

 

 

 

Figure 4: Binarized Image (UTVF Database) 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

1 (0,0) 7 ….... ….... ….... 
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2 (1,0) 6 ….... ….... ….... 

3 (2,0) 7 ….... ….... ….... 

4 (3,0) 6 ….... ….... ….... 

5 (4,0) 8 ….... ….... ….... 

6 (5,0) 6 ….... ….... ….... 

7 (6,0) 9 255335 (646,379) 2 

8 (7,0) 10 255336 (647,379) 1 

9 (8,0) 8 255337 (648,379) 4 

10 (9,0) 7 255338 (649,379) 3 

11 (10,0) 9 255339 (650,379) 3 

12 (11,0) 7 255340 (651,379) 3 

13 (12,0) 10 255341 (652,379) 4 

14 (13,0) 8 255342 (653,379) 2 

15 (14,0) 9 255343 (654,379) 3 

16 (15,0) 7 255344 (655,379) 3 

17 (16,0) 11 255345 (656,379) 3 

18 (17,0) 12 255346 (657,379) 4 

19 (18,0) 11 255347 (658,379) 4 

20 (19,0) 12 255348 (659,379) 2 

21 (20,0) 14 255349 (660,379) 3 

22 (21,0) 12 255350 (661,379) 4 

23 (22,0) 13 255351 (662,379) 2 

24 (23,0) 11 255352 (663,379) 1 

25 (24,0) 14 255353 (664,379) 3 

26 (25,0) 11 255354 (665,379) 3 

27 (26,0) 15 255355 (666,379) 2 

28 (27,0) 12 255356 (667,379) 1 

29 (28,0) 12 255357 (668,379) 3 

30 (29,0) 10 255358 (669,379) 0 

31 (30,0) 12 255359 (670,379) 2 

32 (31,0) 9 255360 (671,379) 0 

Table 1: Raw Image Pixel Grey Values 
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Table 1 describe pixel intensity (grey value) of every pixel in the raw finger vein image from 

finger vein image database. Figure 2 is showing raw image from UTVF database and Figure 3 

is showing image after applying Repeated Line Tracking (RLT) on the image. 

 

Grey Value Histogram:  

 

Figure 5. Histogram of the Input Image (from UTVF database) 

Histogram of the input image is shown in Figure 5, which is showing grey values on x-axis 

and pixel frequency on y-axis. 

Grey Value of some of pixels of RLT image (displayed in Figure 3 above): 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

(274,21)  177 18 (85,48)  251 15 

(365,44)  167 19 (86,48)  194 19 

(366,44)  173 19 (87,48)  214 17 

(345,45)  171 25 (89,48)  209 18 

(347,45)  181 22 (90,48)  158 19 

(348,45)  167 23 (91,48)  200 16 

(350,45)  173 24 (92,48)  216 21 

(351,45)  196 21 (93,48)  232 17 
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(358,45)  165 23 (94,48)  189 22 

(360,45)  211 21 (96,48)  211 21 

(361,45)  229 19 (100,48)  209 21 

(363,45)  165 18 (104,48)  248 18 

(369,45)  218 16 (105,48)  248 21 

(371,45)  226 16 (116,48)  174 24 

(402,45)  162 13 (119,48)  162 20 

(419,45)  169 13 (123,48)  252 21 

(346,46)  179 27 (125,48)  197 25 

(358,46)  198 21 (128,48)  202 24 

(359,46)  218 19 (130,48)  215 22 

(362,46)  191 20 (131,48)  163 20 

(365,46)  168 20 (132,48)  162 23 

(367,46)  254 16 (135,48)  230 21 

(369,46)  160 17 (136,48)  211 22 

(370,46)  241 18 (137,48)  180 20 

(372,46)  241 20 (138,48)  251 26 

(374,46)  185 19 (140,48)  220 24 

(376,46)  199 18 (143,48)  232 20 

(377,46)  202 16 (144,48)  196 25 

(378,46)  193 17 (506,48)  167 8 

(379,46)  197 15 (64,49)  167 17 

(397,46)  156 15 (65,49)  165 16 

(355,47)  158 21 (66,49)  172 18 

(356,47)  201 23 (67,49)  169 16 

(357,47)  222 20 (68,49)  160 16 

(364,47)  174 22 (70,49)  167 16 

(370,47)  174 18 (72,49)  207 15 

(371,47)  235 17 (73,49)  182 13 

(373,47)  218 16 (74,49)  211 18 

(374,47)  163 18 (75,49)  204 16 

(375,47)  172 15 (76,49)  209 17 

(377,47)  182 17 (77,49)  240 16 

(378,47)  194 18 (78,49)  240 16 

(379,47)  205 15 (79,49)  211 16 

(380,47)  202 16 (81,49)  190 14 

(505,47)  173 9 (87,49)  194 17 

(78,48)  172 17 (89,49)  225 17 

(79,48)  192 15 (94,49)  196 23 

(81,48)  173 15 (96,49)  183 21 

(83,48)  188 17 (100,49)  236 22 

(84,48)  177 15 (102,49)  232 21 

Table 2: Grey Value of Some Pixels of RLT Image (UTVF database) 
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Pixel wise frequency of grey value of raw image as shown in Figure 2: 

Grey 

Values 

Pixel 

Frequency 

Grey 

Values 

Pixel 

Frequency 

Grey 

Values 

Pixel 

Frequency 

0 51259 86 576 172 87 

1 23505 87 517 173 78 

2 17083 88 523 174 85 

3 11080 89 475 175 76 

4 7179 90 492 176 77 

5 5340 91 470 177 66 

6 4340 92 467 178 76 

7 3792 93 435 179 73 

8 3392 94 406 180 61 

9 3087 95 426 181 84 

10 2949 96 403 182 66 

11 2762 97 425 183 51 

12 2654 98 378 184 65 

13 2569 99 402 185 56 

14 2454 100 342 186 50 

15 2397 101 366 187 60 

16 2265 102 362 188 63 

17 2212 103 337 189 64 

18 2126 104 326 190 68 

19 2061 105 362 191 54 

20 2058 106 359 192 51 

21 1981 107 336 193 49 

22 1874 108 308 194 69 

23 1824 109 319 195 49 

24 1830 110 291 196 46 

25 1795 111 287 197 47 

26 1718 112 277 198 44 

27 1736 113 269 199 54 

28 1622 114 253 200 50 

29 1577 115 280 201 61 

30 1600 116 251 202 78 

31 1622 117 259 203 50 

32 1599 118 253 204 44 

33 1522 119 256 205 43 

34 1517 120 210 206 52 

35 1477 121 221 207 43 

36 1427 122 225 208 39 

37 1496 123 229 209 53 

38 1438 124 233 210 46 

39 1461 125 189 211 50 
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40 1336 126 213 212 43 

41 1378 127 186 213 52 

42 1298 128 224 214 37 

43 1295 129 203 215 48 

44 1297 130 188 216 59 

45 1198 131 190 217 46 

46 1208 132 177 218 47 

47 1248 133 169 219 29 

48 1215 134 173 220 48 

49 1208 135 160 221 48 

50 1219 136 159 222 37 

51 1221 137 162 223 42 

52 1164 138 165 224 28 

53 1098 139 151 225 40 

54 1091 140 132 226 44 

55 1108 141 132 227 25 

56 1019 142 126 228 32 

57 1039 143 134 229 44 

58 1086 144 144 230 27 

59 976 145 143 231 39 

60 976 146 111 232 36 

61 989 147 121 233 26 

62 1015 148 114 234 39 

63 962 149 84 235 25 

64 955 150 127 236 35 

65 965 151 118 237 32 

66 912 152 100 238 23 

67 862 153 105 239 33 

68 860 154 109 240 34 

69 854 155 92 241 28 

70 823 156 88 242 35 

71 809 157 95 243 38 

72 790 158 115 244 25 

73 736 159 85 245 30 

74 761 160 89 246 28 

75 717 161 81 247 28 

76 762 162 92 248 29 

77 703 163 78 249 25 

78 646 164 108 250 21 

79 708 165 88 251 32 

80 674 166 91 252 32 

81 660 167 101 253 25 

82 554 168 93 254 26 

83 578 169 87 255 25 
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84 604 170 84     

85 547 171 71     

Table 3: Pixel wise frequency of grey value of raw image as  

shown in Figure 2 (UTVF database) 

Table 3 is showing pixelwise frequency of grey value of raw image of UTVF database. 

Histogram of image after applying Repeated Line Tracking (RLT) Algorithm (UTVF 

Database): 

 

Figure 6. Histogram of image after applying RLT (UTVF Database) 

Histogram showing in figure 6 describing grey values on x-axis and pixel frequency on y-

axis. This histogram is based on the pixels and grey values described on Table 2. 

3.1.1 Output Results using Threshold 151  

 Binarization of Image (Threshold 151) 

 

Figure 7: Binarized image after RLT (Threshold 151). 
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The binarization has been applied on the RLT image as shown in figure 3. The 

threshold value used for binarization is 151 for experimental purpose. This implies 

that pixel having grey value greater than 151 is converted into 255 and in other case, 

the pixel grey value (pixel intensity) is converted into 0. 0 grey value represents 

black background and 255 value represents white pixels which may be referred as 

the features of the image. 

The resultant binarized image using threshold value of 151 is shown in Figure 7 

above. The RLT image is having total pixels 255360, out of which white pixels 

comes out 5755 and 249605 pixels are black pixels. This means that using threshold 

value of 151 for binarization, the number of features of the RLT image comes out as 

5755.  

3.1.2 Output Results using Threshold 152: 

 Binarization of Image (Threshold 152)  

 

Figure 8: Binarized image after RLT (Threshold 152) 

The binarization has been applied on the RLT image as shown in figure 3. The 

threshold value used for binarization is 152 for experimental purpose. This implies 

that pixel having grey value greater than 152 is converted into 255 and in other case, 

the pixel grey value (pixel intensity) is converted into 0. 0 grey value represents 

black background and 255 value represents white pixels which may be referred as 

the features of the image. 

The resultant binarized image using threshold value of 152 is shown in Figure 8 

above. The RLT image is having total pixels 255360, out of which white pixels 

comes out 5655 and 249705 pixels are black pixels. This means that using threshold 
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value of 152 for binarization, the number of features of the RLT image comes out as 

5655.  

3.1.3 Output Results using Threshold 153: 

Binarization of Image (Threshold 153) 

 

Figure 9: Binarized image after RLT (Threshold 153) 

The binarization has been applied on the RLT image as shown in figure 3. The 

threshold value used for binarization is 153 for experimental purpose. This implies 

that pixel having grey value greater than 153 is converted into 255 and in other case, 

the pixel grey value (pixel intensity) is converted into 0. 0 grey value represents 

black background and 255 value represents white pixels which may be referred as 

the features of the image. 

The resultant binarized image using threshold value of 153 is shown in Figure 9 

above. The RLT image is having total pixels 255360, out of which white pixels 

comes out 5550 and 249810 pixels are black pixels. This means that using threshold 

value of 153 for binarization, the number of features of the RLT image comes out as 

5550.  
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3.1.4 Output Results using Threshold 154: 

Binarization of Image (Threshold 154) 

 

Figure 10: Binarized image after RLT (Threshold 154) 

The binarization has been applied on the RLT image as shown in figure 3. The 

threshold value used for binarization is 154 for experimental purpose. This implies 

that pixel having grey value greater than 154 is converted into 255 and in other case, 

the pixel grey value (pixel intensity) is converted into 0. 0 grey value represents 

black background and 255 value represents white pixels which may be referred as 

the features of the image. 

The resultant binarized image using threshold value of 154 is shown in Figure 10 

above. The RLT image is having total pixels 255360, out of which white pixels 

comes out 5441 and 249919 pixels are black pixels. This means that using threshold 

value of 154 for binarization, the number of features of the RLT image comes out as 

5441.  
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3.1.5 Output Results using Threshold 155 

Binarization of Image (Threshold 155) 

 

Figure 11: Binarized image after RLT (Threshold 155) 

The binarization has been applied on the RLT image as shown in figure 3. The 

threshold value used for binarization is 155 for experimental purpose. This implies 

that pixel having grey value greater than 155 is converted into 255 and in other case, 

the pixel grey value (pixel intensity) is converted into 0. 0 grey value represents 

black background and 255 value represents white pixels which may be referred as 

the features of the image. 

The resultant binarized image using threshold value of 155 is shown in Figure 11 

above. The RLT image is having total pixels 255360, out of which white pixels 

comes out 5349 and 250011 pixels are black pixels. This means that using threshold 

value of 155 for binarization, the number of features of the RLT image comes out as 

5349. Bar chart of binarized image having threshold value of 155 is shown in figure 

12 for UTVF database. 
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Figure 12: Bar Chart of Binarized Image (Using Threshold 155) – UTVF Database 

3.2 Features Extraction using RLT Algorithm (The Hong Kong Polytechnic University 

Finger Image Database) 

Input Image and Image after applying Repeated Line Tracking (RLT):  

Input Finger Vein Image Image after applying RLT on Input Image 

 
Figure 13. Input Image (HKPU 

Database) 

 

 
Figure 14. Output Image after applying 

RLT on the input image (HKPU 

Database) 
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Figure 15: Binarized Image (HKPU Database) 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

1 (0,0) 8 ….. ….. ….. 

2 (1,0) 8 ….. ….. ….. 

3 (2,0) 8 ….. ….. ….. 

4 (3,0) 8 ….. ….. ….. 

5 (4,0) 8 ….. ….. ….. 

6 (5,0) 9 ….. ….. ….. 

7 (6,0) 10 ….. ….. ….. 

8 (7,0) 9 ….. ….. ….. 

9 (8,0) 11 ….. ….. ….. 

10 (9,0) 10 ….. ….. ….. 

11 (10,0) 11 ….. ….. ….. 

12 (11,0) 11 ….. ….. ….. 

13 (12,0) 12 ….. ….. ….. 

14 (13,0) 12 ….. ….. ….. 

15 (14,0) 12 ….. ….. ….. 

16 (15,0) 13 ….. ….. ….. 

17 (16,0) 13 ….. ….. ….. 

18 (17,0) 13 ….. ….. ….. 

19 (18,0) 13 ….. ….. ….. 

20 (19,0) 14 ….. ….. ….. 

21 (20,0) 14 ….. ….. ….. 

22 (21,0) 15 131318 (502,255) 25 

23 (22,0) 15 131319 (503,255) 19 

24 (23,0) 15 131320 (504,255) 15 

25 (24,0) 16 131321 (505,255) 8 

26 (25,0) 15 131322 (506,255) 8 

27 (26,0) 16 131323 (507,255) 8 

28 (27,0) 16 131324 (508,255) 8 

29 (28,0) 16 131325 (509,255) 8 

30 (29,0) 16 131326 (510,255) 8 

31 (30,0) 17 131327 (511,255) 8 

32 (31,0) 17 131328 (512,255) 8 

Table 4: Raw Image Pixel Grey Values (HKPU Database) 
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Table 3 describe pixel intensity (grey value) of every pixel in the raw finger vein image from 

finger vein image database. Figure 13 is showing raw image from HKPU database and Figure 

14 is showing image after applying Repeated Line Tracking (RLT) on the image. 

Grey Value Histogram (HKPU DB):  

 

Figure 16. Histogram of the Input Image (from HKPU database) 

Histogram of the input image is shown in Figure 16, which is showing grey values on x-axis 

and pixel frequency on y-axis. 

Grey Value of some of pixels of RLT image (displayed in Figure 14 above): 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

(87,16)  156 21 (169,17)  211 47 

(88,16)  203 22 (170,17)  166 47 

(89,16)  195 21 (171,17)  162 47 

(90,16)  216 22 (172,17)  202 48 

(91,16)  195 22 (173,17)  231 48 

(92,16)  156 22 (182,17)  184 52 

(93,16)  161 23 (95,18)  198 24 

(94,16)  167 23 (96,18)  214 25 

(135,16)  158 39 (98,18)  228 25 
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(136,16)  180 40 (100,18)  243 25 

(137,16)  197 40 (101,18)  174 26 

(138,16)  222 40 (144,18)  157 40 

(139,16)  233 40 (159,18)  160 43 

(140,16)  245 40 (164,18)  165 45 

(141,16)  216 40 (175,18)  160 48 

(149,16)  230 43 (178,18)  167 49 

(151,16)  252 43 (179,18)  211 49 

(153,16)  244 43 (180,18)  214 50 

(154,16)  248 44 (183,18)  181 51 

(161,16)  252 45 (184,18)  180 52 

(176,16)  193 50 (99,19)  208 25 

(181,16)  176 52 (100,19)  164 25 

(86,17)  157 22 (102,19)  168 26 

(87,17)  181 22 (103,19)  172 26 

(88,17)  212 22 (182,19)  238 50 

(89,17)  228 22 (185,19)  201 51 

(94,17)  240 23 (189,19)  192 53 

(98,17)  215 26 (99,20)  199 25 

(99,17)  156 26 (102,20)  239 26 

(140,17)  162 40 (103,20)  184 26 

(141,17)  202 40 (104,20)  191 27 

(143,17)  177 41 (183,20)  175 50 

(144,17)  172 40 (184,20)  200 50 

(146,17)  189 41 (187,20)  166 51 

(147,17)  173 41 (189,20)  251 52 

(151,17)  180 42 (191,20)  182 53 

(152,17)  182 43 (192,20)  165 53 

(153,17)  167 43 (100,21)  206 25 

(155,17)  175 44 (101,21)  227 26 

(156,17)  231 44 (105,21)  237 27 

(157,17)  225 43 (184,21)  163 49 

(158,17)  193 41 (185,21)  182 48 

(159,17)  176 43 (187,21)  190 50 

(160,17)  175 43 (189,21)  224 51 

(163,17)  186 46 (190,21)  202 51 

(164,17)  176 46 (191,21)  254 52 

(165,17)  167 47 (194,21)  228 54 

(166,17)  160 47 (101,22)  197 26 

(167,17)  179 47 (102,22)  193 26 

(168,17)  157 47 (184,22)  157 48 

Table 5: Grey values of some of the pixels of RLT image (HKPU Database) 
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 Pixel wise frequency of grey value of raw image as shown in Figure 13: 

Grey 

Values 

Pixel 

Frequency 

Grey 

Values 

Pixel 

Frequency 

Grey 

Values 

Pixel 

Frequency 

0 30221 86 240 172 124 

1 12766 87 275 173 116 

2 12774 88 279 174 96 

3 8815 89 249 175 114 

4 5385 90 267 176 111 

5 3066 91 260 177 107 

6 1869 92 235 178 118 

7 1323 93 277 179 100 

8 1011 94 228 180 95 

9 929 95 205 181 122 

10 803 96 239 182 110 

11 814 97 218 183 96 

12 754 98 236 184 117 

13 717 99 248 185 97 

14 676 100 222 186 112 

15 653 101 248 187 90 

16 651 102 239 188 94 

17 675 103 222 189 92 

18 574 104 239 190 90 

19 567 105 214 191 84 

20 562 106 234 192 103 

21 583 107 225 193 99 

22 572 108 201 194 89 

23 500 109 208 195 88 

24 508 110 224 196 78 

25 507 111 203 197 75 

26 512 112 220 198 73 

27 475 113 230 199 90 

28 471 114 203 200 94 

29 426 115 204 201 79 

30 463 116 225 202 77 

31 431 117 216 203 67 

32 452 118 189 204 63 

33 440 119 221 205 66 

34 439 120 187 206 87 

35 424 121 184 207 78 

36 413 122 186 208 77 

37 400 123 205 209 76 

38 426 124 175 210 77 

39 374 125 214 211 73 

40 400 126 207 212 60 

41 383 127 179 213 69 

42 431 128 184 214 82 

43 408 129 177 215 60 



48 
 

44 376 130 189 216 64 

45 415 131 184 217 66 

46 342 132 171 218 72 

47 379 133 184 219 65 

48 332 134 199 220 53 

49 336 135 194 221 55 

50 363 136 183 222 64 

51 322 137 166 223 58 

52 334 138 151 224 63 

53 330 139 148 225 77 

54 316 140 189 226 70 

55 317 141 168 227 82 

56 328 142 153 228 71 

57 296 143 187 229 63 

58 315 144 175 230 54 

59 313 145 175 231 49 

60 329 146 177 232 55 

61 281 147 158 233 56 

62 292 148 163 234 43 

63 310 149 179 235 47 

64 310 150 140 236 53 

65 325 151 143 237 70 

66 310 152 137 238 63 

67 308 153 157 239 63 

68 291 154 154 240 63 

69 310 155 160 241 53 

70 246 156 146 242 55 

71 290 157 131 243 52 

72 268 158 143 244 57 

73 274 159 156 245 46 

74 299 160 138 246 45 

75 304 161 129 247 45 

76 280 162 118 248 51 

77 248 163 140 249 56 

78 273 164 141 250 48 

79 279 165 136 251 44 

80 265 166 133 252 49 

81 254 167 118 253 47 

82 261 168 136 254 57 

83 248 169 108 255 49 

84 266 170 112     

85 269 171 112     

Table 6: Pixel wise frequency with respect to grey value of the image obtained after applying 

RLT (on image shown in Figure 5)  
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Histogram of image grey value vs pixel frequency (using Table 4 above): 

 

Figure 17. Histogram based on Table 4 values (of image obtained after applying RLT 

algorithm). 

3.3 Features Extraction using RLT Algorithm (FV-USM Database) 

Input Image and Image after applying Repeated Line Tracking (RLT) on Dr. Fendi 

database: 

Input Finger Vein Image Image after applying RLT on Input Image 

 

  
Figure 18. Input Image (Dr. Fendi 

database) 

 

 

 
Figure 19. Output Image after applying RLT 

on the input image (Dr. Fendi Database) 
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Figure 20: Binarized image (Dr. Fendi Database) – Image Scaled to 2000*1326 Pixels 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

Pixel Sr. 

No. 

Pixel 

Position 

Grey 

Value 

1 (0,0)  8 ….. ….. ….. 

2 (1,0)  8 ….. ….. ….. 

3 (2,0)  8 ….. ….. ….. 

4 (3,0)  8 ….. ….. ….. 

5 (4,0)  8 ….. ….. ….. 

6 (5,0)  8 ….. ….. ….. 

7 (6,0)  8 ….. ….. ….. 

8 (7,0)  8 ….. ….. ….. 

9 (8,0)  8 ….. ….. ….. 

10 (9,0)  8 ….. ….. ….. 

11 (10,0)  8 ….. ….. ….. 

12 (11,0)  8 ….. ….. ….. 

13 (12,0)  8 ….. ….. ….. 

14 (13,0)  8 ….. ….. ….. 

15 (14,0)  8 ….. ….. ….. 

16 (15,0)  8 ….. ….. ….. 

17 (16,0)  8 ….. ….. ….. 

18 (17,0)  8 ….. ….. ….. 

19 (18,0)  8 ….. ….. ….. 

20 (19,0)  8 ….. ….. ….. 

21 (20,0)  8 ….. ….. ….. 

22 (21,0)  8 307190 (629,479) 7 

23 (22,0)  8 307191 (630,479) 7 

24 (23,0)  8 307192 (631,479) 7 

25 (24,0)  8 307193 (632,479) 7 

26 (25,0)  8 307194 (633,479) 7 

27 (26,0)  8 307195 (634,479) 7 

28 (27,0)  8 307196 (635,479) 7 

29 (28,0)  8 307197 (636,479) 7 

30 (29,0)  8 307198 (637,479) 7 

31 (30,0)  8 307199 (638,479) 7 

32 (31,0)  8 307200 (639,479) 7 

Table 7: Raw Image Pixel Grey Values (Dr. Fendi Database) 
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Table 7 describe pixel intensity (grey value) of every pixel in the raw finger vein image from 

finger vein image database. Figure 18 is showing raw image from Dr. Fendi database and 

Figure 19 is showing image after applying Repeated Line Tracking (RLT) on the image from 

Dr. Fendi Database. 

Grey Value Histogram (Dr. Fendi DB):  

 

Figure 21. Histogram of the Input Image (from Dr Fendi database) 

Histogram of the input image grey value is shown in Figure 18, which is showing grey values 

on x-axis and pixel frequency on y-axis. 

Grey Value of some of pixels of RLT image (displayed in Figure 19 above): 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

Feature 

Coordinates 

Grey 

Value 

after 

applying 

RLT 

Original 

Grey 

Value 

(282,138)  158 34 (334,424)  204 43 

(284,138)  179 34 (335,424)  196 43 

(220,391)  160 12 (336,424)  229 44 

(355,412)  187 54 (337,424)  203 44 

(323,413)  158 43 (338,424)  181 44 

(351,413)  191 52 (339,424)  163 45 

(353,413)  227 53 (340,424)  167 45 

(354,413)  234 53 (384,437)  177 19 
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(355,413)  176 54 (383,438)  156 18 

(356,413)  163 55 (370,439)  181 19 

(312,414)  160 44 (367,440)  159 18 

(350,414)  188 52 (364,441)  228 18 

(351,414)  165 52 (365,441)  184 18 

(355,414)  193 54 (362,442)  177 17 

(313,415)  198 44 (363,442)  225 16 

(314,415)  193 44 (358,443)  179 16 

(324,415)  165 41 (359,443)  232 16 

(315,416)  172 44 (361,443)  187 16 

(316,416)  233 43 (355,444)  188 15 

(318,417)  248 43 (358,444)  246 15 

(319,417)  193 43 (313,445)  190 13 

(347,417)  191 49 (351,445)  200 16 

(346,418)  202 48 (354,445)  241 14 

(347,418)  162 49 (355,445)  200 14 

(338,420)  158 45 (345,446)  193 14 

(336,421)  166 44 (346,446)  230 14 

(337,421)  201 45 (347,446)  243 14 

(338,421)  224 45 (348,446)  255 14 

(339,421)  177 45 (349,446)  253 15 

(342,421)  247 46 (351,446)  185 15 

(343,421)  185 46 (354,446)  191 15 

(329,422)  156 42 (331,447)  164 13 

(335,422)  159 44 (332,447)  225 13 

(337,422)  172 44 (333,447)  206 13 

(338,422)  199 45 (334,447)  205 13 

(339,422)  196 45 (335,447)  174 13 

(340,422)  203 45 (341,447)  174 14 

(341,422)  208 46 (343,447)  173 14 

(333,423)  157 44 (344,447)  176 16 

(334,423)  156 44 (345,447)  169 15 

(335,423)  173 44 (346,447)  199 15 

(336,423)  178 44 (347,447)  215 15 

(337,423)  175 44 (348,447)  242 15 

(338,423)  200 44 (349,447)  235 14 

(339,423)  207 45 (350,447)  176 14 

(340,423)  170 45 (321,448)  164 13 

(341,423)  199 46 (322,448)  168 13 

(333,424)  178 43 (325,448)  164 13 

Table 8: Grey Value of some of pixels of RLT image (Dr. Fendi Database) 
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Pixel wise frequency of grey value of raw image as shown in Figure 18: 

4 5 51 1513 98 484 

5 109 52 1571 99 465 

6 4609 53 1686 100 508 

7 24062 54 1754 101 434 

8 27864 55 1632 102 491 

9 25207 56 1759 103 545 

10 20980 57 1574 104 554 

11 22083 58 1340 105 556 

12 19790 59 1318 106 469 

13 16003 60 1067 107 493 

14 12765 61 1035 108 516 

15 9267 62 942 109 558 

16 6651 63 1019 110 527 

17 5657 64 835 111 658 

18 4254 65 810 112 728 

19 3914 66 692 113 830 

20 3493 67 686 114 667 

21 3087 68 762 115 595 

22 2883 69 651 116 471 

23 2560 70 647 117 402 

24 2208 71 671 118 413 

25 2067 72 645 119 366 

26 2253 73 684 120 424 

27 1915 74 602 121 385 

28 1602 75 666 122 349 

29 1583 76 702 123 301 

30 1484 77 692 124 352 

31 1372 78 729 125 420 

32 1243 79 700 126 280 

33 1088 80 614 127 228 

34 1056 81 642 128 114 

35 1091 82 652 129 55 

36 999 83 600 130 57 

37 1017 84 602 131 71 

38 1080 85 680 132 65 

39 943 86 596 133 47 

40 1010 87 675 134 40 

41 1037 88 596 135 34 

42 1170 89 650 136 42 

43 1175 90 594 137 28 

44 1294 91 530 138 33 

45 1454 92 507 139 29 

46 1348 93 525 140 12 

47 1374 94 465 141 4 

48 1489 95 408 142 3 

49 1500 96 385 144 1 

50 1446 97 449 146 1 



54 
 

Table 9: Pixel wise frequency with respect to grey value of the image obtained after applying 

RLT (image shown in Figure 19)  

 

Figure 22. Histogram based on Table 6 values (of image obtained after applying RLT 

algorithm). 

3.4 Cancelability on Features Extracted using RLT 

3.4.1 Fingerprint template protection using multiline neighbouring relation 

Biometric template protection schemes are: 

 

Figure 23: Biometric Template Protection Classification 
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Biometric feature transformation is referred as cancellable biometrics. A systematic 

transformation is applied to biometric data, resulting in the generation of a transformed 

template known as a cancellable template.  

 

Figure 24: Fingerprint template protection process. 

If an enrolled cancellable template is compromised, it will be replaced with a new 

transformed template. The primary objectives of cancellable biometric template design are as 

follows: 

➢ Irreversible 

➢ Accuracy 

➢ Diversity 

➢ Revocability 

 

Irreversibility: Ensure that it is computationally impossible to retrieve the original template 

from the transformed template. 

Accuracy: Maintain a consistent recognition rate between the transformed template and the 

original template. 

Diversity: Enable the generation of multiple unique transformed templates from a single 

original template. 

Revocability: Allow for the generation of a new and distinct template from the same 

fingerprint impression if the enrolled template is compromised. 

Multiline neighbouring relation method deals with neighbourhood relationship around minutia. 

High level steps involved in multiline neighbouring relation method are: 

➢ Draw “M” number of rectangles around every reference minutia. 

➢ Select the minutia which fall in the rectangles and calculate the distance and 

orientation angle of the minutia. 

➢ The invariant distance and orientation (calculated above) is called neighbouring 

relationship. 

➢ This neighbouring relation is projected on a plane to generate a fixed length bit 

string. 
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Figure 25: Bit String and Transformed Vector Generation 

 

Multiline Neighbouring Method: 

 

This consists of following steps: 

➢ Multiline neighbouring relation generation. 

➢ Plane based quantization and bit string generation. 

➢ Cancelable template generation 

➢ Matching 

 

Multiline neighbouring relation generation: 

 

Extract the minutia from fingerprint impression. 

Suppose minutiae set is Ni. Let us suppose, we have 9 features (minutiae) extracted from 

fingerprint,  

So, k=9 (No. of minutiae in the fingerprint) 

Now, minutiae set Ni is represented as:  

 

 
Figure 26: Minutiae set representation 

 

Out of the minutiae set, select any one minutiae which can be called as reference minutiae. It 

is denoted as (xr, yr, θr) 
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Figure 27: M rectangles with different orientation around reference minutiae. 

Construct M no. of rectangles (in our case, M=3 as there are 3 rectangles) around the 

reference minutiae, reference point will be in center (xr,yr). 

Length of rectangle = l 

Width of rectangle = w 

Orientation of rectangles are:  

 

In our case, M=3. So, orientation of rectangles are 

θr, θr + π/3+, θr +2π/3  

Now, select the minutiae which fall in every rectangle constructed around reference minutiae. 

The selected minutia (common in all rectangles), distance and orientation angle to calculate 

from reference minutiae. 

For explanation,  

 

χ  and ϒ are the horizontal and vertical directions on a coordinate plane 
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Figure 28: Distance and Orientation between reference minutiae and selected minutiae. 

χ2 +ϒ2 = r2 

here, r=dij 

So, we can rewrite it as  

 

and 

 

dij means distance from reference minutiae to ith minutiae in the jth rectangle. 

and 

ϴij means angle of ith minutiae in jth rectangle. 

m, n, o = no. of minutiae which fall in 1st, 2nd and Mth rectangle 

For understanding purpose, we have 3 rectangles, so  

m = number of minutiae points in 1st rectangle. 

n = number of minutiae points in 2nd rectangle. 

O= number of minutiae points in 3rd rectangle. 
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Distance and minutiae orientation calculated is called as multiline neighbouring relation 

around reference minutiae. 

Multiline neighbouring relation is represented as Lr (in vector form).  

e.g., for first rectangle 

Lr = {[d11, ϴ11], [d21, ϴ21], [d31, ϴ31], ……………., [dm1, ϴm1]} 

L1 = {[d11, ϴ11], [d21, ϴ21], [d31, ϴ31]} 

To understand the concept, suppose 

m = 3 

n = 2 

o = 4 

It means, in 1st rectangle, there are three minutiae (referred as m), 

in 2nd rectangle, there are two minutiae (referred as n) and  

in 3rd rectangle, there are four minutiae (referred as o)   

It means that [d11, ϴ11] belongs to rectangle 1 

and d11 means distance from reference minutiae to 1st minutiae in rectangle 1. 

Similarly, ϴ11 means orientation angle of 1st minutiae in 1st rectangle. 

Multiline neighbouring relation for 2nd rectangle can be represented as  

L2 = {[d12, ϴ11], [d22, ϴ22]} 

Similarly,  

L3 = {[d13, ϴ13], [d23, ϴ23], [d33, ϴ33], [d43, ϴ43]} 

Multiline neighbouring relation around a particular reference point can be represented as: 

Lr = {L1, L2, L3} 

In similar manner, change reference minutiae and calculate multiline neighbouring relation 

vector for ever minutiae. 

The fingerprint template will contain all multiline neighbouring relations generated using 

every reference minutia. This can be represented as: 

L = {Lr, Lv, Lf, ………… Lg} 

Where r,v,f….., g are different reference minutiae. 

We store distance of minutiae and orientation in vector L; which is a reference minutiae in a 

given triangle. 
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Plane Based Quantization and Bit String Generation: 

As explained in previous section,  

Lr is represented as a 2-D vector. 

L= {L1, L2, L3} (in our example, for understanding purpose) 

Technically, Lr = {dij, ϴ33} 

Suppose, Lr = {[d13, ϴ13], [d23, ϴ23], [d33, ϴ33], [d43, ϴ43]} 

(The Lr is for 3rd rectangle) 

Plot this vector Lr on plane 

 

 

Figure 29: Plane Based Quantization 

In our example, we are taking 3rd rectangle and for understanding purpose, suppose diagonal 

of rectangle is 12. 

 

Figure 30: Rectangle Diagonal Illustration 

Now, vector Lr is quantized on the plane 
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Figure 31: Quantized Vector Lr on the plane 

Now, the quantized plane looks like 

 

Figure 32: Cell wise quantized plane 

On x-axis, 6 represents “length of diagonal of rectangle/2” whereas y axis represents 

orientation angle. 

Divide the plane into cells, cells have size Cx,Cy 

U= No. of Cells (Horizontal) = 6/Cx 

V= No. of Cells (Vertical) = 2π/Cy 
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Now, the locate minutiae of Lr plane to check which minutiae falls in which cell. 

To understand the concept, lets understand it in detail and consider:  

L3= {[d13, ϴ13], [d23, ϴ23], [d33, ϴ33], [d43, ϴ43]} 

 

Figure 33: Cell wise minutiae location in quantized plane 

For understanding purpose, suppose: 

d13=2, d23=3, d33=4.2, d43=5.5 and 

ϴ13=80, ϴ23=130, ϴ33=250, ϴ43=320 

The above plane is represented as x & y axis instead of (dij & ϴij)  

So, corresponding x value and y value can be calculated using formula  

χi=dij/cx 

ϒi= ϴij/cy 

Considering four coordinates on plane, four χ and ϒ are calculated from four dij and ϴij. 

Therefore, 

χ1=d13/cx 

i.e., 2/1.5 = 1.33 

ϒ1= ϴ13/cy 

i.e., 80/90 = 0.88 

 

Similarly, 

χ2=d23/cx 

i.e., 3/1.5 = 2 
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ϒ2= ϴ23/cy 

i.e., 130/90 = 1.44, 

χ3=d33/cx 

i.e., 4.2/1.5 = 2.8 

ϒ3= ϴ33/cy 

i.e., 250/90 = 2.77, 

χ4=d43/cx 

i.e., 5.5/1.5 = 3.66 

ϒ3= ϴ43/cy 

i.e., 320/90 = 3.55 

The goal of quantization of plane is to represent vector in the from: 

{[d13, ϴ13], [d23, ϴ23], [d33, ϴ33], [d43, ϴ43]} 

to quantized vector 

{[χ1, ϒ1], [χ2, ϒ2], [χ3, ϒ3], [χ4, ϒ4]} 

To understand the concept,  

Vector Lr {(2,80), (3,130), (4.2,250), (5.5,320)} 

is represented in quantized form as: 

{(1.33,0.88), (2,1.44), (2.8,2.77), (3.66,3.55)} 

Now, 1 D (one dimensional) bit string is generated. 

As number of cells in quantized plane are 16, so 1D bit string (Hw).  

It implies that: 

Hw = {contains values equal to no. of cells in quantized plane} 

Initially, Hw is represented as  

Hw = {- - - - - - - - - - - - - - - -} 

It denotes null value initially and “- “represents no. of cells (16 in this case). 

Every cell in the plane is visited sequentially. If a cell has more than one (xi,yi) , value of cell 

(bit) in Hw is set to 1 else value is set to 0. 

On applying above logic, finally binary string (Hw) looks like: 

Hw = {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0} 

Binary string Hw is referred as one dimensional (1-D) bit string. 

Note: Number of bits in the bit string (Hw)  

B=U*V (i.e., no. of cells in the plane) 
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Cancelable Template Generation 

If bit string is compromised, the vector Lr can be revealed. 

 

Figure 34: Bit String to Complex Vector Transformation using DFT  

 
 

Di is called B-Point Discrete Fourier Transformation on Hw  

Now, complex vector D = [D0, D1, ………, DB-1] T 

To secure complex vector D, generate a user specific random matrix (R) using a user’s pin. 

R=p*q 

Q=B (size of bit string i.e., U*V; which is number of cells in the plane) 

P<q 

T=Resulting vector of size p*1 transformed complex vector 

Transformation is given by 

RD=T 

For verification, 

Same random matrix (R) can be generated using same user’s PIN which is used for enrolment 

of the user’s fingerprint. 

Perform step 2 (plane-based quantization and bit string generation) and step 3 (cancellable 

template generation) for all remaining vectors in L. 

After performing the bit string and template generation for all neighbouring relations 

L= {L1, L2, L3, L4, ……………., Lk} 

k= number of minutiae in fingerprint. 

Cancellable template contains ‘k’ number of transformed multiline neighbouring relations. 

3.4.2 Concept of GAR (Genuine Acceptance Rate) and False Acceptance Rate (FAR)  

GAR is Genuine Acceptance Rate and FAR is False Acceptance Rate. In the domain of 

biometrics, the Genuine Acceptance Rate (GAR) is a critical performance metric used to 

evaluate the accuracy and reliability of a biometric system. GAR represents the percentage of 
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genuine users who are correctly identified by the system as genuine. In other words, it measures 

the rate at which the biometric system correctly accepts and authenticates individuals who are 

indeed authorized to access the system. 

To calculate the Genuine Acceptance Rate, the biometric system compares the biometric data 

of an individual (such as fingerprints, face, iris, voice, etc.) with the stored reference template 

associated with that individual. If the comparison result indicates a sufficiently high similarity 

score, the individual is deemed genuine, and the GAR is increased. If the similarity score falls 

below a predefined threshold, the individual is considered an imposter or unauthorized user, 

and the system should reject their access attempt. 

GAR is an essential metric in assessing the effectiveness of biometric systems, especially in 

security-critical applications where accurate identification and authentication are crucial. 

Alongside GAR, biometric systems are also evaluated using other metrics such as False 

Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER), and Receiver 

Operating Characteristic (ROC) curves to provide a comprehensive understanding of system 

performance. 

It's important to note that achieving a high Genuine Acceptance Rate while keeping the False 

Acceptance Rate low is a key challenge in biometric system design. A balance must be struck 

between ease of use and security to ensure the system is both user-friendly and robust against 

imposters. 

In summary, Genuine Acceptance Rate (GAR) is a critical performance measure in biometrics 

that quantifies the correct acceptance of genuine users by the system, making it a fundamental 

factor in evaluating the overall reliability and accuracy of biometric authentication systems. 

The Genuine Acceptance Rate (GAR) in the field of biometrics is typically calculated using 

the following formula: 

GAR = (Number of Genuine Matches / Number of Genuine Attempts) * 100 

In this formula: 

Number of Genuine Matches refers to the number of times the biometric system correctly 

identifies and accepts genuine users as genuine. 
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Number of Genuine Attempts refers to the total number of times genuine users attempt to 

access the system. 

By dividing the Number of Genuine Matches by the Number of Genuine Attempts and then 

multiplying by 100, we get the Genuine Acceptance Rate expressed as a percentage. 

The GAR is a critical performance metric used to evaluate the accuracy and reliability of a 

biometric system in correctly accepting genuine users. A higher GAR value indicates a more 

accurate and reliable system, as it correctly identifies genuine users with a higher success rate. 

It is essential to balance the GAR with the False Acceptance Rate (FAR) to ensure both 

accuracy and security in biometric authentication systems. 

In the domain of biometrics, the False Acceptance Rate (FAR) is a significant performance 

metric used to assess the accuracy and security of a biometric system. FAR represents the 

percentage of imposters or unauthorized users who are incorrectly identified as genuine by the 

system. In other words, it measures the rate at which the biometric system mistakenly accepts 

individuals who should not be granted access. 

To calculate the False Acceptance Rate, the biometric system compares the biometric data of 

an individual (such as fingerprints, face, iris, voice, etc.) with the stored reference template 

associated with that individual. If the comparison result indicates a similarity score that exceeds 

a predefined threshold, the individual is incorrectly recognized as genuine, and the FAR is 

increased. This means that the system mistakenly allows unauthorized users to access the 

system. 

FAR is a critical factor in evaluating the security of biometric systems, particularly in 

applications where access control and identity verification are essential. A high FAR can pose 

serious security risks as it indicates that the system is vulnerable to imposters and unauthorized 

access. 

To design an effective biometric system, it is crucial to find the right balance between the False 

Acceptance Rate (FAR) and the Genuine Acceptance Rate (GAR). Lowering the FAR to 

reduce security risks may inadvertently increase the False Rejection Rate (FRR), where 

genuine users are incorrectly rejected. Achieving a good trade-off between FAR and FRR is 

crucial to providing both accurate identification and robust security. 
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Biometric systems are often tuned by adjusting the threshold to optimize the FAR and FRR for 

specific applications. The goal is to minimize the FAR while still maintaining an acceptable 

level of user convenience and system usability. 

In summary, False Acceptance Rate (FAR) is an essential performance measure in biometrics 

that quantifies the rate at which unauthorized users are incorrectly accepted by the system. It 

is a critical factor in evaluating the security of biometric authentication systems and plays a 

crucial role in achieving the right balance between accuracy and usability. 

The False Acceptance Rate (FAR) in the field of biometrics is typically calculated using the 

following formula: 

FAR = (Number of False Matches / Number of Impostor Attempts) * 100 

In this formula: 

Number of False Matches refers to the number of times the biometric system incorrectly 

identifies an imposter as a genuine user. 

Number of Impostor Attempts refers to the total number of times imposters or unauthorized 

users attempt to access the system. 

By dividing the Number of False Matches by the Number of Impostor Attempts and then 

multiplying by 100, we get the False Acceptance Rate expressed as a percentage. 

The FAR is a critical performance metric used to evaluate the security of a biometric system 

in preventing imposters or unauthorized users from gaining access. A lower FAR value 

indicates a more secure system, as it correctly rejects imposters with a higher success rate. It is 

essential to balance the FAR with the Genuine Acceptance Rate (GAR) to ensure both security 

and accuracy in biometric authentication systems. 

The curve between GAR and FAR denote the relationship between the two rates. Ideally GAR 

should be 1 which denotes that all the genuine scores are perfect match. In other words, a user’s 

own fingers got matched with his/her finger features accurately an ideally FAR should be 0 

which denotes that the false matches should be 0 and there should not be any false match 

allowed into the system. Typical ROC (receiver operating characteristics) characteristic where 

typical signal values, m5 > m4 > m3 > m2 > m1 are used and “m0” is assumed to be zero. The 

ideal characteristics would be GAR = 1 and FAR = 0 and the worst scenario, GAR = FAR 

which is diagonal solid line marked as “Worst Performance” in Fig. 35. It is observed that as 
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the signal value increases, the ROC curve shifts toward the ideal curve and the detection 

performance improves (https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-

019-0089-z). 

 

Figure 35: FAR and GAR Graph 

The performance of a biometric system can be assessed using two metrics: false acceptance 

rate (FAR) and false rejection rate (FRR). FAR represents the probability of incorrectly 

accepting an authentication attempt by an impostor, while FRR represents the probability of 

incorrectly rejecting an authentication attempt by a genuine user. The values of FAR and FRR 

depend on the system's predetermined threshold. Another metric, the Equal Error Rate (EER), 

indicates the point where acceptance and rejection errors are equal (EER = FAR = FRR). A 

lower EER signifies higher accuracy in the biometric system. 

  

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-019-0089-z
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-019-0089-z
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Figure 36: Genuine and impostor distributions as a function of distance between enrolment 

and authentication templates 

Figure 36 provides a visual representation of the genuine and impostor distributions in a 

biometric system based on the distance between enrolled and authentication templates. 

Genuine users are associated with small distances, while impostors have larger distances. The 

overlapping area between the two distributions indicates instances where the system cannot 

distinguish between genuine users and impostors. The threshold value, shown in figure 36, is 

set at the point where the two curves intersect. This threshold divides the overlapping area into 

two sub-areas: the left sub-area represents the false acceptance rate (FAR), and the right sub-

area represents the false rejection rate (FRR). The intersection point defines the Equal Error 

Rate (EER), where FAR and FRR are equal (EER = FAR = FRR). A biometric system performs 

optimally when there is no overlap between the genuine and impostor curves, resulting in FAR 

and FRR values of 0. Conversely, as the overlapping area increases, the authentication 

performance deteriorates. 

3.4.3 Calculation of EER and DPRIME Value on Different Finger vein Databases  

3.4.3.1 University of Twente: 

The University of Twente Finger Vein Pattern (UTVP) dataset consists of 1440 finger vascular 

pattern images obtained from 60 volunteers at the university during the 2011-2012 academic 

year. The images were captured in two sessions with an average time-lapse of 15 days. Each 

session involved capturing the vascular pattern of the index, ring, and middle fingers of both 
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hands, resulting in four captures for each finger. The images have a resolution of 672 × 380 

pixels and a pixel density of 126 pixels per centimetre (ppcm). They are stored in the lossless 

8-bit greyscale Portable Network Graphics (PNG) format. Approximately 73% of the data 

subjects are male, and 87% are right-handed. The dataset primarily represents a young 

population, with 82% of the subjects falling in the age range of 19-30 years. Sample images 

from the dataset are shown in Figure 37. While the quality of the captured images may vary 

among subjects, there is minimal variation within the images from the same subject.  

 

Figure 37: Sample images of the left-hand ring finger from the collected dataset. 

(University of Twente Finger Vein Pattern (UTVP) dataset) 

The width of the visible blood vessels ranges from 4–20 pixels which, using a pixel density of 

126 pixels per centimetre, corresponds to vessel widths of approximately 0.3–1.6 mm. The 

pixel density was determined by placing a piece of flat graph paper at exactly the same position 

as the finger and counting the number of pixels per centimetre in the recorded image. This 

resulted in a pixel density of 126 pixels per centimetre. 

On applying cancelability on finger vein features using multiline neighbouring relations, EER 

and DPRIME values are calculated using different keys. The values are listed in Table 10. 

Key EER DPRIME 

Template with  

Complex values 

1400 0.0085 4.8481 1400*1 

1700 0.0061 5.0012 1700*1 

1100 0.0077 4.8818 1100*1 
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Table 10: University of Twente database EER and DPRIME Values based on different Keys 

Sample Template for 1700 Key  

(After applying Cancelability) 

-285.705779243688 - 65.1830063137017i 

-709.469869794415 - 265.546707007000i 

-357.854933446591 + 586.868021450045i 

337.942862489556 - 523.681437517808i 

132.291613837678 - 125.134150870527i 

320.642731632355 + 54.0051882993646i 

221.705928045422 - 205.353811077538i 

481.298456261681 + 316.859336788364i 

916.938865330447 + 416.567555271649i 

-32.8347093265702 - 314.847471389331i 

Table 11: Sample cancelability template using 1700 as key (UTVP Database) 

 

Figure 38: UTFD Distribution Curve 1100 (Imposter Score and Genuine Score) 

 



72 
 

 

Figure 39: UTFD Distribution Curve 1400 (Imposter Score and Genuine Score) 

 

 

Figure 40: UTFD Distribution Curve 1700 (Imposter Score and Genuine Score) 
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Figure 41: UTFD GAR FAR Curve with Key 1100 

 

 

Figure 42: UTFD GAR FAR Curve with Key1400 
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Figure 43: UTFD GAR FAR Curve with key1700 

3.4.3.2 Hong Kong Polytechnic University Database: 

We have extracted features from Hong Kong University finger vein image dataset in the 

required format (x axis y axis original grey value).  

The image dataset description is: 

The currently available database has 2520 images from the 105 subjects, all the images are in 

bitmap (*.bmp) format. In this dataset about 93% of the subjects are younger than 30 years. 

The finger images were acquired in two separate sessions with a minimum interval of one-

month, maximum interval of over six months and the average interval of 66.8 days. In each 

session, each of the subjects provided 6 image samples from index finger middle finger 

respectively, and each sample consisted of one finger vein image and one finger texture image 

from the left hand. Therefore, each subject provided 24 images in one session. 

Attaching corresponding features files for 2520 images.  

Key EER DPRIME 

Template with Complex 

values 

1400 0.0557 3.1047 1400*1 

1700 0.0532 3.1693 1700*1 

1100 0.0512 3.1994 1100*1 

Table 12: HKPU database EER and DPRIME Values based on different Keys 
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Sample Template for 1700 Key  

(After applying Cancelability) 

-285.705779243688 - 65.1830063137017i 

-709.469869794415 - 265.546707007000i 

-357.854933446591 + 586.868021450045i 

337.942862489556 - 523.681437517808i 

132.291613837678 - 125.134150870527i 

320.642731632355 + 54.0051882993646i 

221.705928045422 - 205.353811077538i 

481.298456261681 + 316.859336788364i 

916.938865330447 + 416.567555271649i 

-32.8347093265702 - 314.847471389331i 

Table 13: Sample cancelability template using 1700 as key (HKPU Database) 

 

Figure 44: HKPU Distribution Curve 1100 (Imposter Score and Genuine Score) 
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Figure 45: HKPU Distribution Curve 1400 (Imposter Score and Genuine Score) 

 

Figure 46: HKPU Distribution Curve 1700 (Imposter Score and Genuine Score) 
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Figure 47: HKPU GAR FAR Curve with key 1100 

 

Figure 48: HKPU GAR FAR Curve with key 1400 
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Figure 49: HKPU GAR FAR Curve with key 1700 

3.4.3.3 Dr. Fendi Database: 

We have extracted features from Dr. Fendi finger vein image dataset in the required format (x 

axis y axis original grey value).  

The image dataset description is: 

The study utilized a database consisting of images obtained from 123 volunteers, comprising 

83 males and 40 females, who were staff and students of Universiti Sains Malaysia. The age 

of the participants ranged from 20 to 52 years. Each volunteer contributed four fingers (left 

index, left middle, right index, and right middle), resulting in a total of 492 finger classes. Six 

images were captured for each finger in one session, and each participant underwent two 

sessions with a gap of over two weeks. In the initial session, a total of 2952 images were 

collected (123 participants x 4 fingers x 6 images). Combining both sessions, a total of 5904 

images from 492 finger classes were obtained. The captured finger images had a spatial 

resolution of 640 x 480 pixels and a depth resolution of 256 grey levels.  

Key EER DPRIME 

Template with Complex 

values 

1400 0.2024 0.7174 1400*1 

1700 0.201 0.7253 1700*1 

1100 0.1987 0.7322 1100*1 

Table 14: Dr. Fendi database EER and DPRIME Values based on different Keys 
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Sample Template for 1700 Key  

(After applying Cancelability) 

-285.705779243688 - 65.1830063137017i 

-709.469869794415 - 265.546707007000i 

-357.854933446591 + 586.868021450045i 

337.942862489556 - 523.681437517808i 

132.291613837678 - 125.134150870527i 

320.642731632355 + 54.0051882993646i 

221.705928045422 - 205.353811077538i 

481.298456261681 + 316.859336788364i 

916.938865330447 + 416.567555271649i 

-32.8347093265702 - 314.847471389331i 

Table 15: Sample cancelability template using 1700 as key (Dr. Fendi Database) 

 

 

Figure 50: Dr Fendi Distribution Curve 1100 (Imposter Score and Genuine Score) 
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Figure 51: Dr. Fendi Distribution Curve 1400 (Imposter Score and Genuine Score) 

 

Figure 52: Dr. Fendi Distribution Curve 1700 (Imposter Score and Genuine Score) 
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Figure 53: Dr Fendi GAR FAR Curve 1100 (Imposter Score and Genuine Score) 

 

Figure 54: Dr Fendi GAR FAR Curve 1400 (Imposter Score and Genuine Score) 
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Figure 55: Dr Fendi GAR FAR Curve 1700 (Imposter Score and Genuine Score) 
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CHAPTER 4 

RESULTS AND ITS ANALYSIS 
 

Some of the available finger vein databases available for public use is displayed in Figure 1. 

We were able to gain access to three databases, namely the UTFV finger vein database, The 

Hong Kong Polytechnic Unissversity finger vein image database, and the Finger Vein USM 

(FV-USM) Database. The dataset description is detailed in the following sections. 

4.1 UTFV Dataset:  

The UTVP dataset, provided by the University of Twente, contains 1440 finger vascular pattern 

images obtained from 60 volunteers affiliated with the university. The data was collected over 

two sessions with an average interval of 15 days. During each session, the vascular patterns of 

the index, ring, and middle fingers from both hands were captured, resulting in four images per 

finger. The images have a resolution of 672x380 pixels and a pixel density of 126 pixels per 

centimeter (ppcm). 

The dataset comprises predominantly male participants (73%) who are primarily right-handed 

(87%). The majority of volunteers fall within the age range of 19-30 years. The images are 

stored in the lossless 8-bit greyscale Portable Network Graphics (PNG) format. While there 

may be slight variations in image quality across subjects, the within-subject variation is 

minimal. The visible blood vessel widths range from 4 to 20 pixels, equivalent to 

approximately 0.3-1.6 mm using the 126 ppcm pixel density. The pixel density was determined 

by comparing the images with a reference graph paper placed in the same position. 

To obtain access to the UTFV dataset, interested individuals can submit an online download 

request and complete the accompanying license agreement provided by the University of 

Twente [33]. 

4.2 The Hong Kong Polytechnic University (HKPU) finger image database 

The finger image database from The Hong Kong Polytechnic University contains simultaneous 

finger vein and finger surface texture images from male and female volunteers. Acquired 

between April 2009 and March 2010 on the university campus using a contactless imaging 

device, the database consists of 6264 images from 156 subjects, all in bitmap (*.bmp) format. 

Around 93% of the subjects are under 30 years old. The images were captured in two sessions, 

with a minimum interval of one-month, maximum interval of over six months, and average 
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interval of 66.8 days. Each subject provided six image samples of their index and middle 

fingers in each session, resulting in a total of 24 images per subject. 

4.3 Finger Vein USM (FV-USM) database 

The database comprises finger images collected from 123 volunteers, including 83 males and 

40 females who were staff and students of Universiti Sains Malaysia. The age of the subjects 

ranged from 20 to 52 years. Each volunteer provided four fingers: left index, left middle, right 

index, and right middle fingers, resulting in a total of 492 finger classes. 

During the data collection process, each finger was captured six times in one session, and each 

participant underwent two sessions with a time gap of over two weeks. In the first session, a 

total of 2952 images were collected (123 volunteers x 4 fingers x 6 captures). Consequently, 

across the two sessions, a total of 5904 images were obtained, representing the 492 finger 

classes. 

The captured finger images had a spatial resolution of 640 x 480 and a depth resolution of 256 

grey levels. Additionally, the database provides extracted Region of Interest (ROI) images 

specifically for finger vein recognition. 

4.4 Synthetic Finger-Vein Image database (The Hong Kong Polytechnic University) 

In recent times, various finger-vein image databases have been made publicly available. 

However, compared to face or iris databases, these finger-vein databases are relatively smaller 

in size and involve a limited number of subjects. Consequently, it becomes challenging to 

extensively test the developed identification algorithms. Acquiring large-scale biometric 

databases is both expensive and inconvenient for the subjects, and it also raises privacy 

concerns associated with biometric data. To overcome some of these challenges, several 

synthetic biometric databases have been created. However, it is worth noting that finger-vein 

image synthesis has not received significant attention from researchers thus far. This project 

develops synthesis model for generating finger-vein images. The program is available for 

public use and can be used to generate large number of synthesized finger-vein images. 

In this research, three databases are used for experimental purpose: 

a) The University of Twente Finger Vascular Pattern (UTFVP) Database 

b) The Hong Kong Polytechnic University Finger Image Database 

c) Finger Vein USM (FV-USM) Database 
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In the sections below, the repeated line tracking algorithm is applied to every database and will 

be discussed in detail. 

The summary of the features obtained after binarization of the RLT image using different 

threshold values are listed below:  

Threshold Binarized Image 
No. of Features 

(White Pixels) 

 

Black Pixels 

151 

 

5755 

 

 

 

      249605 

152 

 

5655 

 

 

249705 

153 

 

5550 

 

 

249810 

154 

 

5441 

 

 

249919 

155 

 

5349 

 

 

250011 

Table 16. Comparison of features extracted after applying RLT algorithm and binarization 

using different threshold values 

Comparison of features extracted after applying RLT algorithm and binarization using different 

threshold values is shown in Table 16. Upon analysing binary images and feature sets, 

threshold value of 155 will be utilized in this research. The extracted features set (white pixels) 

is referred to as biometric template of corresponding input image. In our work, we have 
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extracted features from three benchmark finger vein databases i.e. HKPU, Dr. Fendi Database 

and UTVF database. Thereafter, cancelability is applied on the extracted features. Multiline 

Neighbouring Relations method is used for cancelability. The EER and DPRIME values have 

been calculated using different key. 

Our Results After Applying Cancelability Using Multiline Neighbouring Relations 

Method: 

Database 
Key EER DPRIME 

Template with Complex 

values 

HKPU 

1400 0.0557 3.1047 1400*1 

1700 0.0532 3.1693 1700*1 

1100 0.0512 3.1994 1100*1 

Dr Fendi 

Database (FV-

USM) 

1400 0.2024 0.7174 1400*1 

1700 0.201 0.7253 1700*1 

1100 0.1987 0.7322 1100*1 

University of 

Twente 

Database 

1400 0.0085 4.8481 1400*1 

1700 0.0061 5.0012 1700*1 

1100 0.0077 4.8818 1100*1 

Table 17: EER Values after applying RLT for features extraction and cancelability using 

Multiline neighbouring relations method. 

We have analysed existing results on the benchmark finger vein databases (FV-USM, Poly U 

and UTVF). Experimental evaluations conducted on three different databases demonstrate the 

effectiveness, reliability, and performance improvement of the different methods for finger 

vein identification. We will discuss it in below sections. 

Full-view 3D representation of finger vein patterns for improved biometric recognition 

  Database 

Method FV-USM Poly U 

Wang [36] 4.75   

Qiu [37] 2.32   

Qin [38] 1.42 2.7 

Qin [39]   2.86 

AlexNet 

[40] 1.01 5.22 

VGG-16 

[41] 2.01 5.1 

ResNet50 

[42] 0.61 2.72 

Kang [43] 0.94 2.4 

Table 18: Investigation of finger vein verification based on full-view 3D technique [43] 
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The thermal palm vein pattern is a new and promising biometric feature that has gained 

significant attention in research and applications. Due to its unique characteristics, such as 

liveness detection and resistance to forgery, several algorithms have been developed for 

authentication purposes. The authors in [36] propose an efficient palm vein identification 

method based on Gabor wavelet features. The method consists of five key steps: image 

acquisition, ROI detection, image preprocessing, feature extraction, and matching. To evaluate 

the approach, authors [36] conducted tests on 178 palm vein images from 101 individuals. Out 

of these, 176 images were correctly recognized, with only two failures. The experimental 

results demonstrate the effectiveness of the proposed approach in palm vein recognition. 

 

In the context of finger vein imaging, uneven illumination is a common issue caused by factors 

like finger position, posture, near-infrared light uniformity, and ambient light. Current methods 

for locating phalangeal joints are sensitive to illumination, resulting in unreliable outcomes. To 

address this, we propose a dual-sliding window model that accurately detects phalangeal joint 

positions in finger vein images. This model is designed to be robust against varying 

illumination conditions. To address this, [37] propose a pseudo-elliptical sampling model that 

retains the spatial distribution of vein patterns while reducing redundant information and 

minimizing differences between images. Furthermore, we employ two-dimensional principal 

component analysis for feature extraction by projecting the transformed image. Authors [37] 

utilize the Euclidean distance. Experimental evaluations conducted on three different databases 

demonstrate the effectiveness, reliability, and performance improvement of the proposed 

method for finger vein identification. 

Finger-vein biometrics has been extensively studied for personal verification. However, 

existing solutions heavily rely on domain knowledge and struggle to robustly extract finger-

vein features from raw images. Authors [38] proposed a deep learning model that can extract 

and recover vein features with limited prior knowledge.  The first step of the proposed approach 

involves combining state-of-the-art handcrafted finger-vein image segmentation techniques. 

This combination aims to automatically identify two distinct regions within the image: a clear 

region characterized by a high separability between finger-vein patterns and the background, 

and an ambiguous region with a low separability. The clear region comprises pixels that are 

consistently labeled as either foreground or background by the segmentation techniques, while 

the ambiguous region contains the remaining pixels. This approach involves employing this 

method to automatically eliminate uncertain areas and assign labels to pixels in the 

unambiguous region, categorizing them as either foreground or background. In a study 
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conducted by Authors [38], they generated a training dataset by extracting patches centered on 

the labeled pixels. Subsequently, a Convolutional Neural Network (CNN) was trained on this 

dataset. The CNN's objective was to estimate the likelihood of each pixel representing a 

foreground (vein) pixel, given a patch centered around it. By learning to differentiate between 

vein patterns and background patterns, the CNN adeptly classifies pixels within any region of 

a test image. Additionally, authors [38] introduce another novel contribution by developing 

and investigating a Fully Convolutional Network (FCN) to recover missing finger-vein patterns 

in the segmented image. The FCN aims to fill in the gaps and reconstruct the complete finger-

vein patterns. Experimental results conducted on two public finger-vein databases demonstrate 

a significant improvement in finger-vein verification accuracy using the proposed approach 

[38]. This indicates the effectiveness and potential of the deep learning model for extracting 

and recovering finger-vein features without relying heavily on domain knowledge. 

Extensive research has been conducted on finger-vein biometrics for personal authentication. 

However, a significant hurdle in finger-vein verification lies in its vulnerability to image 

quality degradation. When images are of poor quality, they can contain misleading or missing 

features, which negatively impact the system's performance [39]. The approach focuses on 

minimizing verification errors in biometric quality assessment. It assumes that low-quality 

images are erroneously rejected in a verification system. Based on this assumption, the authors 

automatically label images as low- or high-quality and proceed to train a DNN using this 

dataset to predict image quality [39].  

 

In the research [40], researchers trained a large and deep convolutional neural network with the 

objective of classifying a vast dataset of 1.2 million high-resolution images from the ImageNet 

LSVRC-2010 contest into 1000 different classes. Our network outperformed the previous state-

of-the-art models, achieving top-1 and top-5 error rates of 37.5% and 17.0%, respectively. 

The neural network developed is quite extensive, with 60 million parameters and 650,000 

neurons. It consists of five convolutional layers, some of which are followed by max-pooling 

layers, and three fully connected layers, culminating in a final 1000-way softmax layer. To 

expedite the training process, researchers utilized non saturating neurons and employed a 

highly efficient GPU implementation for convolution operations. To mitigate overfitting issues 

in the fully connected layers, authors [40] employed a recently developed regularization 

technique known as "dropout," which proved to be highly effective. This method helps prevent 

the neural network from relying too heavily on specific features or neurons during training, 

enhancing its generalization capabilities. 
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Researchers [40] participated in the ILSVRC-2012 competition, entering a variant of our 

model, and achieved a top-5 test error rate of 15.3%. This result surpassed the second-best 

entry, which achieved a test error rate of 26.2%, thereby demonstrating the superiority of the 

approach. Overall, the research [40] showcases the power and effectiveness of deep 

convolutional neural networks for image classification tasks, particularly in terms of achieving 

significantly improved accuracy compared to previous state-of-the-art models. Authors [41] 

focused on investigating the impact of convolutional network depth on its accuracy in the 

context of large-scale image recognition.  Primary contribution lies in conducting a 

comprehensive evaluation of networks with increasing depth, using an architecture that 

incorporates small (3×3) convolution filters. Through the research, researchers [41] discovered 

that by increasing the depth of the network to 16-19 weight layers, able to achieve a significant 

improvement over prior state-of-the-art configuration.  

Researchers [42] address the challenge of training deeper neural networks, which tend to be 

more difficult to optimize. Introduce a novel residual learning framework that facilitates the 

training of significantly deeper networks compared to previous approaches. Instead of directly 

learning the intended underlying functions, the authors [42] adopt a different approach by 

redefining the network layers to learn residual functions relative to the layer inputs. This novel 

strategy has demonstrated improved optimization and enables the construction of deeper 

networks with enhanced accuracy. In their evaluation using the ImageNet dataset, the 

researchers evaluate residual networks with depths of up to 152 layers, which is eight times 

deeper than VGG nets, while still maintaining lower complexity. Through an ensemble of these 

residual networks, they achieve an impressive 3.57% error rate on the ImageNet test set, 

securing the top position in the ILSVRC 2015 classification task. Furthermore, the authors [42] 

present comprehensive analysis and results on the CIFAR-10 dataset, demonstrating the 

scalability and effectiveness of their approach across different scales, including the successful 

implementation of networks with 100 and 1000 layers. The depth of representations plays a 

vital role in various visual recognition tasks, and extremely deep representations yield 

remarkable improvements. Specifically, on the COCO object detection dataset, the deep 

residual networks achieve a 28% relative improvement. Overall, the work [42] demonstrates 

the power and effectiveness of deep residual networks in training significantly deeper neural 

networks, achieving state-of-the-art performance in various visual recognition tasks. 

The finger vein modality in biometrics has unique advantages, but current vein verification 

systems face limitations in vein imaging and information acquisition. Commonly, these 
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systems rely on a monocular camera to capture a 2D vein image from a single viewpoint on 

one side of the finger. However, this approach presents two main challenges. Firstly, it results 

in limited vein pattern information available for verification purposes. The captured image may 

not contain sufficient details to ensure accurate identification. Secondly, there are variations 

among samples of the same individual due to different finger positions when using contact-

free modes. These variations can affect the consistency and reliability of the system, making it 

more challenging to achieve consistent and accurate authentication. These issues adversely 

affect system performance, especially in relation to positional variations caused by pitch and 

roll movements. To address these challenges comprehensively, researchers [43] propose a 

novel system comprising a hardware and software platform.  

In this approach [43], researchers present a new method for 3D reconstruction that enables the 

generation of a complete 3D finger vein image, providing a full view of the veins. This allows 

for a more comprehensive representation of the finger vein patterns. Additionally, we employ 

a feature extraction and matching strategy specifically designed for 3D finger vein data. Our 

strategy utilizes a lightweight convolutional neural network (CNN) that incorporates depth-

wise separable convolution, enabling efficient and effective processing of the 3D vein 

information. Through extensive experimentation, we have validated the potential of our 

proposed system. In comparison to the traditional single-view 2D approach for finger vein 

recognition, our system demonstrates significant improvements in recognition performance. 

By leveraging the additional valuable information provided by finger vein biometrics in the 

form of 3D data, we achieve enhanced accuracy and reliability in the recognition process. The 

approach efficiently addresses the limitations of existing systems and demonstrates the benefits 

of utilizing a full-view 3D representation of finger vein patterns for improved biometric 

recognition [43]. 

Convolutional Auto-Encoder Model for Finger-Vein Verification 

Dataset Features Linear Poly RBF 

FV-USM   EER EER EER 

  16 17 0.21 1.54 

  32 4.37 0.12 0.92 

Table 19: Convolutional Auto-Encoder Model for Finger-Vein Verification [44] 

In their study, the authors [44] proposed FV-GAN, a pattern extraction model based on 

CycleGAN, for finger vein verification. FV-GAN utilizes deep learning techniques to learn a 
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deep pattern representation and predict the probability of pixels being veins or background. By 

leveraging adversarial training, FV-GAN robustly extracts vein patterns from finger vein 

images, leading to significant improvements in verification performance in terms of accuracy 

and equal error rate (EER). 

In their future research, the authors plan to explore several interesting aspects to further 

enhance finger vein verification. Firstly, they aim to collect a larger database to improve the 

generalization and scalability of their model. Secondly, they acknowledge the challenges and 

instability of training GANs (Generative Adversarial Networks) even with advanced 

techniques like WGAN, CycleGAN, and DCGAN. Therefore, they intend to investigate 

alternative deep learning techniques to make the training of GANs more stable and easier to 

converge. Another intriguing aspect they highlight is the comparison between the generated 

finger vein images and the raw finger vein images. The generated images exhibit reduced noise 

and outliers, indicating the potential for enhancing finger vein images and extracting finger 

vein skeletons. This generative process holds promise for addressing various problems in finger 

vein verification. For example, the generator could be further developed to expand the finger 

vein database. Vein patterns from raw data can be extracted using conventional or deep 

learning-based methods and input into the generator with random noise. The generated results, 

while different from each other due to noise variations, would share the same finger vein 

skeletons as the raw images. This approach offers a means to expand the raw database, and the 

authors emphasize the need for further investigation into these promising outputs. 

Convolutional Neural Network for Finger-Vein-based Biometric Identification 

Paper Database Subjects Feature Extraction Method Classifier EER 

Xi et al. 

[45] HKPU 105 

Discriminative Binary Codes 

(DBC) SVM 1.44% 

Bakhtiar 

et al. 

[46] FV-USM 123 

Modified Gaussian Filter(MGF) 

enhanced & displacement 

corrected images 

Band 

Limited 

Phase Only 

Correlation 

(BLPOC) 2.34% 

Yang et 

al. [47] HKPU 105 

Anatomy Structure Analysis 

Based Vein Extraction (ASAVE) 

Elastic 

Matching 0.38% 
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Ton et 

al. [48]  UTFVP 60 Maximum Curvature 

Correlation 

Based 

Comparison 0.40% 

Kauba et 

al. [49] UTFVP 60 Different feature level fusion 

Correlation 

Based 

Comparison 0.19% 

Table 20: Convolutional Neural Network for Finger-Vein-based Biometric Identification 

In [45], the authors propose a novel method called Discriminative Binary Codes (DBC) 

learning for finger vein recognition. The goal is to develop binary templates that capture the 

vein characteristics of subjects in a discriminative and representative manner. The optimization 

problem is formulated to ensure that the transformed templates are both discriminative and 

informative about the subjects. This is achieved by maximizing the distance between templates 

from different subjects and maximizing the amount of information provided by the templates. 

The obtained binary templates are then used to provide supervised information for training 

instances, and Support Vector Machines (SVMs) are trained as the code learners for each bit. 

The DBC (Dynamic Binary Code) method in finger vein recognition offers several advantages 

compared to existing binary codes. Firstly, DBCs are more discriminative and shorter, 

providing a more effective and efficient representation. Furthermore, DBCs take into account 

the relationships among subjects, which has the potential to enhance the performance of finger 

vein recognition even further. The effectiveness and efficiency of the DBC method are 

evaluated through experiments conducted on the PolyU database and MLA database. The 

experimental results demonstrate the superiority of DBCs for finger vein recognition and 

retrieval tasks, validating the proposed method's effectiveness in capturing vein characteristics 

and its potential for improving recognition performance [45]. 

A multimodal finger biometrics approach is proposed by the authors [46] to enhance 

performance by combining finger vein recognition and finger geometry recognition. The 

method utilizes Band Limited Phase Only Correlation (BLPOC) for measuring the similarity 

of finger vein images, which improves robustness against noise, occlusions, and rescaling 

factors. For finger geometry recognition, a novel geometric feature called Width-Centroid 

Contour Distance (WCCD) is introduced, which combines finger width with Centroid Contour 

Distance (CCD) to capture comprehensive geometric information. The fusion of these two 

features enhances the accuracy of finger geometry recognition compared to using a single 
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feature type. The fusion of finger vein and finger geometry recognition is achieved using a 

score-level fusion method based on the weighted SUM rule. This integration combines the 

recognition scores from both modalities to obtain a final decision. Experimental evaluation on 

a database collected from 123 volunteers demonstrates the effectiveness of the proposed 

approach. The equal error rate (EER) achieved is 1.78%, and the total processing time is 24.22 

ms, indicating efficient and accurate recognition performance. Overall, the proposed 

multimodal finger biometrics approach, combining finger vein and finger geometry 

recognition, offers enhanced accuracy and robustness, making it a promising solution for 

reliable and secure biometric authentication [46]. 

A novel framework is introduced by the authors [47] to enhance the performance of finger vein 

recognition methods. The framework includes two components: an anatomy structure analysis-

based vein extraction (ASAVE) algorithm and an integration matching strategy. The ASAVE 

algorithm focuses on analysing the anatomical structure of the finger to improve the accuracy 

of vein extraction. The integration matching strategy combines multiple matching algorithms 

or techniques to achieve more reliable and robust matching results. The ASAVE algorithm 

focuses on accurately extracting vein patterns by considering the finger's anatomical structure. 

The integration matching strategy combines vein patterns from multiple sources to enhance 

recognition accuracy. Overall, this framework aims to enhance the reliability and accuracy of 

finger vein recognition. The ASAVE algorithm focuses on analysing the anatomy structure and 

imaging characteristics of vein patterns. This extraction method helps to address the issues 

related to defective vein networks and weak matching. Furthermore, the extracted vein pattern 

undergoes thinning and refinement processes to obtain a more reliable vein network. In 

addition to the vein network, the framework also mines relatively clear vein branches from the 

vein pattern, known as the vein backbone. These vein backbones serve as an additional feature 

for matching and contribute to overcoming finger displacements, which can occur during the 

capture process. The matching process involves the calibration of the vein network using the 

vein backbone information. The overlap degree of corresponding vein backbones is also 

integrated into the similarity computation to improve accuracy. The effectiveness of the 

proposed framework is validated through extensive experiments conducted on two public 

finger vein databases. The results demonstrate that the framework achieves improved 

performance in terms of finger vein recognition accuracy and reliability. Overall, the proposed 

framework, incorporating the ASAVE algorithm and integration matching strategy, provides a 

comprehensive approach to finger vein recognition by leveraging the analysis of anatomy 
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structure and imaging characteristics. This approach shows promising results in addressing the 

challenges associated with defective vein networks, weak matching, and finger displacements, 

thereby advancing the field of finger vein recognition [47]. 

The authors [48] introduce a new finger vascular pattern dataset that addresses the scarcity of 

available datasets in the field. The dataset consists of 1440 high-resolution images with a 

known pixel density. What sets this dataset apart is the inclusion of additional meta data, such 

as age, gender, and handedness of the volunteers, which makes it unique compared to existing 

datasets. The capturing device used to obtain the images is custom-designed, and the paper 

discusses the various aspects involved in its design. This information provides insights into the 

technical details and considerations necessary for capturing high-quality finger vascular 

patterns. The evaluation metric used is the equal error rate (EER), which measures the point at 

which false acceptance and false rejection rates are equal. The presented results indicate that 

the new dataset has enabled achieving remarkably low EERs, with values as low as 0.4% being 

attained. Overall, this contributes to the field of finger vascular pattern recognition by 

introducing a new dataset with high-resolution images and accompanying meta data. The 

availability of this dataset and the achieved performance figures serve as important resources 

for researchers and facilitate advancements in the development and evaluation of algorithms 

for finger vascular pattern recognition [48]. 

The paper [49] highlights the importance of accurate vein pattern extraction in finger-vein-

based authentication systems. Due to variations in image quality, a single feature extraction 

technique may not always capture the vein pattern correctly, leading to poor recognition 

performance. To address this issue, the authors [49] propose the use of biometric fusion, 

specifically feature level fusion, to enhance the quality of extracted vein patterns and improve 

feature extraction accuracy. The study involves experimenting with different feature extraction 

techniques, such as maximum curvature, repeated line tracking, and wide line detector, among 

others. These techniques extract vein patterns from the input images. Additionally, various 

fusion techniques, including majority voting, weighted average, and STAPLE, are employed 

to combine the outputs of multiple feature extractors. The UTFVP finger-vein dataset is used 

for conducting the experimental study. The results demonstrate that feature level fusion can 

enhance recognition accuracy, as measured by the equal error rate (EER), compared to using a 

single feature extraction technique alone. The fusion of multiple feature extractors' outputs 

helps mitigate the limitations and variations associated with individual techniques, resulting in 

improved vein pattern extraction and subsequently better recognition performance. Overall, the 
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paper [49] emphasizes the effectiveness of feature level fusion in finger-vein recognition 

systems. By combining the strengths of multiple feature extraction techniques, the accuracy of 

vein pattern extraction is enhanced, leading to improved authentication performance. 

The authors [50] propose a CNN-based finger-vein identification system for accurate 

identification under diverse environmental conditions. Extensive experiments using multiple 

databases demonstrate a rank-1 accuracy of over 95%. The study emphasizes dataset diversity, 

training data quantity, and the impact of image quality on system performance. Training with 

data from multiple sessions improves identification accuracy under varying lighting conditions. 

Overall, the research presents a robust CNN-based system for finger-vein identification [50]. 

From Noise to Feature: Exploiting Intensity Distribution as a Novel Soft Biometric Trait 

for Finger Vein Recognition 

  Database: FV-USM 

  EER Values 

  SM HM 

LBP+AM&V 0.257% 0.216% 

WLD+AM&V 0.772% 0.379% 

HOG+AM&V 0.433% 0.108% 

SIFT+AM&V 0.243% 0.237% 

 

Table 21: From Noise to Feature: Exploiting Intensity Distribution as a Novel Soft Biometric 

Trait for Finger Vein Recognition [51] 

The authors [51] address a limitation in previous finger vein recognition research by focusing 

on the texture feature of finger veins and neglecting the intensity distribution in the background. 

They propose a soft biometric trait extraction algorithm that takes into account the intensity 

distribution as an important factor in finger vein recognition. The proposed algorithm consists 

of several steps. First, the background layer, which does not contain finger vein texture, is 

extracted using two methods: Image Light Source (ILS) and Gaussian Blur (GB). Then, the 

intensity distribution in the background layer is described using three soft biometric traits. 

These traits capture specific characteristics of the intensity distribution. To improve matching 

accuracy, the authors propose a hybrid matching strategy that combines the primary biometric 

trait (finger vein texture) with the soft biometric traits. By incorporating the soft biometric 

traits, the matching accuracy is enhanced compared to using only the primary biometric trait. 

The experimental results validate the effectiveness of the proposed approach. It is found that 

GB achieves similar performance to ILS but with less computational time. Furthermore, when 
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applied to three open-access databases, the fusion of the primary biometric trait and the soft 

biometric trait leads to a lower Equal Error Rate (EER) compared to using only the primary 

biometric trait. This demonstrates the efficiency and universality of the proposed soft biometric 

trait. The performance of the soft biometric trait is shown to be robust across a range of sigma 

changes, indicating its stability. This preliminary study of the soft biometric trait based on the 

intensity distribution contributes to the field of finger vein recognition by considering 

previously overlooked information. Overall, the paper introduces a novel approach that 

incorporates the intensity distribution as a soft biometric trait in finger vein recognition. The 

proposed method demonstrates improved matching accuracy and stability, highlighting the 

potential of considering the background intensity distribution in future finger vein recognition 

systems [51]. 

On-the-Fly Finger-Vein-Based Biometric 

Paper 

Biometric 

Identifier Database 

EER 

(%) 

    Name Class#   

Xie et al. [47] 

[53] Finger Vein 

HKPU 

[10] 302 (156 Users) 0.11% 

Jalilian et al. [51] 

[54] Finger Vein 

UTFVP 

[42]  360 (60 Users) 4.53% 

Kim et al. [55] Finger Vein 

HKPU 

[10] 302 (156 Users) 0.79% 

 

Table 22: On-the-Fly Finger-Vein-Based Biometric [52] 

This system [52] allows for contactless identification of users by simply passing their hand 

over a sensor, without the need for physical contact. This approach is the first of its kind in the 

literature. The acquisition module is designed using low-cost sensors to facilitate free hand 

movement during both enrolment and recognition processes, ensuring user convenience. Deep 

learning techniques are employed in both scenarios. The analysis demonstrates that using 

multiple-exposure data enhances the recognition accuracy compared to single-exposure 

images. Additionally, exploiting multi-channel Low Dynamic Range (LDR) images taken at 

different exposure times as raw input templates further improves identification accuracy. To 

address finger vein identification, the authors propose a novel Convolutional Neural Network 

(CNN) architecture called V-CNN, which surpasses other state-of-the-art CNN architectures 

in performance. Furthermore, the authors introduce the novel use of temporal information 

related to hand movement over the sensor [52]. 
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This paper [53] focuses on automated personal identification using vascular biometrics, 

specifically finger vein images. Overall, the paper highlights the effectiveness of using CNNs 

and supervised discrete hashing for finger vein authentication. The proposed approach 

demonstrates superior performance compared to existing methods and offers the advantage of 

reduced template size, which is beneficial for storage and processing efficiency [53]. 

In their study, the authors [54] introduce a novel approach for finger-vein recognition. Their 

method directly extracts finger-vein patterns from near-infrared (NIR) finger images without 

requiring any pre- or post-processing steps. They achieve this by utilizing semantic 

segmentation convolutional neural networks (CNNs), specifically three different network 

architectures. The authors conduct experiments to identify efficient training and configuration 

settings for the CNNs. They use manually annotated training data to train the networks, but 

they also introduce a training model based on automatically generated labels to further improve 

the networks' performance. In addition to presenting their proposed model and experimental 

results, the authors contribute to the research community by releasing human annotated ground-

truth vein pixel labels for a subset of two well-known finger-vein databases used in their work. 

They also provide a corresponding annotation tool to facilitate further annotations in this area. 

According to the experimental results, the proposed model outperforms traditional finger-vein 

recognition algorithms, demonstrating the effectiveness of the direct extraction approach and 

the use of semantic segmentation CNNs. The availability of annotated ground-truth data and 

the annotation tool further support the advancement of research in finger-vein recognition [54]. 

In this research [55], the authors propose a multimodal biometric recognition system that 

combines finger-vein and finger shape modalities using a near-infrared (NIR) light camera 

sensor. The conventional finger-vein recognition methods can suffer from issues such as image 

misalignment and illumination variation, which can affect the recognition performance. To 

tackle the challenges associated with finger-vein and fingerprint recognition, researchers have 

explored multimodal biometric systems that recognize both modalities simultaneously. 

However, acquiring images for both finger-veins and fingerprints typically necessitates 

different sensors or a larger device size. To overcome these limitations, the authors propose a 

multimodal biometric system that combines finger-vein and finger shape recognition. They 

employ a deep convolutional neural network (CNN) and an NIR light camera sensor for this 

purpose. By leveraging this approach, they aim to achieve accurate and efficient biometric 

recognition without the need for additional sensors or increased device size. The CNN is trained 

to extract discriminative features from the finger-vein and finger shape modalities captured in 
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NIR light. The experimental results demonstrate that the proposed method outperforms 

conventional approaches in terms of recognition performance. By leveraging the advantages of 

deep learning and NIR imaging, the proposed multimodal biometric system offers improved 

accuracy and robustness compared to handcrafted feature-based methods. It eliminates the need 

for separate sensors or devices for acquiring finger-vein and fingerprint images. Overall, the 

research contributes to the field of multimodal biometrics by proposing an effective approach 

for finger-vein and finger shape recognition using an NIR light camera sensor and deep CNNs 

[55]. 

Recognition performance (EER) for the UTFVP data set using 2-fold evaluation 

UTFVP EER in % 

  avg std min max 

Bozorth3 2.4 0.4 2.0 4.1 

Bozorth3* 13.4 0.6 12.1 15.6 

IDKit 2.2 0.3 1.7 3.2 

IDKit* 1.2 0.2 1.0 2.1 

VeriFinger 3.0 0.2 2.6 3.6 

VeriFinger* 0.5 0.1 0.3 0.6 

MHD 11.4 0.5 11.0 13.8 

SML 4.7 1.0 3.7 7.4 

PC 0.5 0.2 0.2 1.3 

GF 1.7 0.2 1.6 2.5 

ASAVE 2.0 0.4 1.4 2.8 

Table 23: Recognition performance (EER) for the UTFVP data set using 2-fold evaluation. 

Methods marked with * indicates that minutiae orientation is set to zero [56]. 

HKPU-FV EER in % 

  avg std min max 

Bozorth3 11.5 0.5 10.8 12.9 

Bozorth3* 13.9 1.2 12.6 17.8 

IDKit 10.4 0.3 9.7 11.9 

IDKit* 8.5 1.3 6.9 12.7 

VeriFinger 10.6 0.3 10.1 11.8 

VeriFinger* 2.8 0.2 2.5 3.7 
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MHD 11.6 1.3 9.9 16.2 

SML 8.5 0.4 7.7 9.4 

PC 2.0 0.3 1.6 3.1 

GF 2.9 0.2 2.8 3.4 

ASAVE 3.3 0.2 2.9 3.8 

Table 24: Recognition performance (EER) for the HKPU-FV data set using 2-fold evaluation 

[56]. 

DataSet Method EER  

UTFVP VeriFinger* 0.28 

  PC 0.23 

HKPU-FV VeriFinger* 2.41 

  PC 1.41 

Table 25: Recognition performance of data sets using all comparison protocol and best 

setting. All values are in % [56] 

The authors [56] highlight the importance of security and privacy in biometric systems and 

mention that the use of Match-on-Card (MoC) technology provides advantages in terms of 

convenience, security, and performance. While MoC technology is already being widely used 

in high-security smart cards, the authors note that no MoC system currently exists for finger 

vein recognition. However, there are several minutiae-based MoC solutions available for 

fingerprint recognition. In this work, the authors propose a minutiae-based approach for finger 

vein recognition and investigate the integration of finger vein minutiae into MoC systems. They 

employ a commercial software that offers MoC solutions and is capable of extracting minutiae 

points from finger vein images. These minutiae points are then compared using a minutiae-

based fingerprint template comparison technique. The resulting minutiae data is stored in a 

standardized biometric data format. By leveraging existing MoC technology and integrating 

finger vein minutiae into the MoC system, the authors aim to provide a secure and privacy-

preserving solution for finger vein recognition. This approach allows for seamless integration 

of finger vein recognition into MoC systems and potentially opens up new possibilities for 

utilizing finger vein biometrics in various applications [56]. 

 

 

 

 

 

 



100 
 

Method Used Finger Vein Databases 

  HKPU FV-USM University of Twente  

Repeated Line Tracking and 

Multiline Neighbouring Relation 

(RLMN) framework  0.0512 0.1987 0.0061 

Investigation of finger vein 

verification based on full-view 3D 

technique [43] 2.4 0.61 Results Not Available 

Convolutional Auto-Encoder Model 

for Finger-Vein Verification [44] 

Results Not 

Available 0.12 Results Not Available 

Convolutional Neural Network for 

Finger-Vein-based Biometric 

Identification 0.0038 0.0243 0.0019 

From Noise to Feature: Exploiting 

Intensity Distribution as a Novel Soft 

Biometric Trait for Finger Vein 

Recognition [51] 

Results Not 

Available 0.0011 Results Not Available 

On-the-Fly Finger-Vein-Based 

Biometric [52] 0.0011 

Results Not 

Available 0.0453 

Recognition performance (EER) for 

the UTFVP data set using 2-fold 

evaluation. Methods marked with * 

indicates that minutiae orientation is 

set to zero [56]. 

Results Not 

Available 

Results Not 

Available 0.002 

Recognition performance (EER) for 

the HKPU-FV data set using 2-fold 

evaluation [56]. 0.016 

Results Not 

Available Results Not Available 

Recognition performance of data sets 

using all comparison protocol and 

best setting. All values are in % [56] 0.0141 

Results Not 

Available 0.0023 

Table 26: Comparison of Finger Vein Recognition Methods: Evaluating EER Values with 

Cancelability for Enhanced Security 
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The table [26] presents the EER values for different finger vein recognition methods on three 

datasets: HKPU, FV-USM, and University of Twente. The RLMN framework achieved 

remarkably low EER values of 0.0512, 0.1987, and 0.0061 for the HKPU, FV-USM, and 

University of Twente datasets, respectively. What makes the RLMN framework particularly 

noteworthy is that it obtained these EER values after applying cancelability, which enhances 

the security and privacy of the biometric system. 

In comparison, other methods evaluated EER values directly on feature extractions without 

applying cancelability. The RLMN framework's ability to achieve such low EER values with 

cancelability showcases its effectiveness in providing robust and accurate finger vein 

recognition. These promising results demonstrate the superiority of the RLMN framework over 

existing methods, making it a valuable contribution to the field of finger vein recognition. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 
 

Three benchmark databases i.e. UTFV, HKPU and FV-USM are identified for this research. 

Experimental setup has been incorporated for features extraction from finger vein images. 

Upon analysis of different threshold values for binarization, value of 155 as threshold is 

finalized for this research due to manageable number of extracted features and less noise in 

output binarized image. Using threshold value of 155, features have been extracted from the 

listed databases using Repeated Line Tracking (RLT) algorithm. 

The multiline neighboring relations generation cancelability technique is applied to the 

extracted features of different databases, namely the Hong Kong Polytechnic University finger 

vein image database, Finger Vein USM (FV-USM) Database, and UTVF database. 

After applying cancelability, the performance parameter Equal Error Rate (EER) has been 

evaluated. We compared the existing results (EER values on untransformed finger vein 

templates and EER values on transformed templates) with our results and found that our 

research has made a significant contribution to the use of finger vein technology in the field of 

biometric verification. We were able to achieve an EER value on the transformed biometric 

template using the Repeated Line Tracking as the feature extraction method with a threshold 

value of 155, and the multiline neighbouring relations method for cancelability on the extracted 

features using a key value of 1700. 

In the future, this technology needs to be further explored using different feature extraction 

methods and cancelability techniques. More datasets should be experimented with for research 

purposes. 
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FEEDBACK RECEIVED ON MID TERM REPORT 

Feedback: “Some research was already done on the above-mentioned technologies earlier. 

This research aims at improving the reliability and revocability of fingerprint patterns for the 

use of the Banking Industry which is interesting. 

  

The anticipated benefits of the proposed technologies to the Banks may be spelt out by 

factoring in the impact on the size, cost of implementation and UIDAI guideline”. 
 
Response: 

 

1. Anticipated benefits of the proposed technologies to the Banks: 

 

Indeed, finger vein biometrics offer several advantages compared to other forms of biometrics 

such as fingerprint, face, or iris scans. Some of the key advantages include: 

Anti-forgery: Finger vein biometrics are difficult to replicate or spoof, making them highly 

secure against forgery attempts. 

Accuracy and speed: Finger vein recognition systems provide high accuracy and speed, 

allowing for efficient and reliable authentication. 

Insensitivity to environmental factors: Finger vein patterns remain unaffected by factors 

such as dirt, sweat, grease, or surface injuries, ensuring consistent and reliable recognition. 

Uniqueness: Vein patterns are unique to each individual, making them a highly secure form 

of identification. Unlike PINs and passwords that can be shared or stolen, vein patterns are 

personal and cannot be easily replicated. 

Internal biometric: Finger vein recognition relies on internal biometric features that are 

difficult to reproduce or manipulate, enhancing security. 

Liveness detection: Modern finger vein readers often incorporate liveness detection features, 

ensuring that a real hand is presented during the authentication process, further enhancing 

security. 

Stability: Vein patterns are established during fetal development and remain stable throughout 

a person's lifetime. Even changes in weight do not significantly alter the vein pattern, ensuring 

long-term reliability. 

User convenience: Finger vein recognition eliminates the need for multiple passwords and 

PINs, providing a convenient way for users to log in to their accounts by simply placing their 

finger on a scanner. 

Given these advantages, finger vein biometrics have gained attention, especially in sectors such 

as banking, where security and user convenience are paramount. They offer a promising 
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solution to combat fraud and provide a secure and efficient means of authentication, reducing 

reliance on traditional password-based systems.  

2. Anticipated applications of finger vein technology in Banks 

ATM: The implementation of finger vein technology in ATMs for cash card-free transactions 

offers several benefits to users. By leveraging finger vein information along with ID input, 

users can authenticate themselves securely and conveniently, eliminating the need to carry a 

physical cash card. Here are some advantages of using finger vein technology in ATMs: 

Enhanced security: Finger vein biometrics provide a high level of security as the vein 

patterns are unique to each individual and difficult to forge or replicate. This helps 

prevent unauthorized access to the ATM and protects user accounts from fraudulent 

activities. 

Convenience: Users no longer need to carry a physical cash card while performing 

ATM transactions. Instead, they can simply input their ID and place their finger on the 

finger vein scanner to authenticate themselves, making the process more convenient 

and streamlined. 

Reduced risk of card-related fraud: With cash card-free transactions, the risk of card-

related fraud, such as card skimming or card cloning, is significantly reduced. Since 

there is no physical card involved, potential vulnerabilities associated with card-based 

transactions are mitigated. 

User-friendly experience: Finger vein technology offers a user-friendly experience by 

eliminating the need for remembering PINs or passwords. Users can complete 

transactions quickly and easily by relying on their unique finger vein pattern. 

Efficient and faster transactions: Cash card-free transactions using finger vein 

technology can expedite the ATM transaction process. Users can authenticate 

themselves swiftly, leading to faster transactions and reduced waiting times at ATMs. 

It's worth noting that the implementation of finger vein technology in ATMs requires 

appropriate security measures to protect the privacy and confidentiality of users' 

biometric data. Compliance with data protection regulations and robust security 

protocols are crucial to ensure the safe and responsible use of finger vein technology in 

ATM systems. 
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Internet Banking: The development of a finger vein Internet banking system for smartphones 

is an exciting and promising application of finger vein technology. By incorporating finger 

vein recognition into personal Internet banking, researchers aim to provide users with a secure 

and convenient authentication method. Here's how such a system could benefit users: 

Enhanced security: Finger vein recognition offers a high level of security, making it 

difficult for unauthorized individuals to access a user's Internet banking account. The 

unique vein patterns in the finger are difficult to forge or replicate, providing strong 

protection against fraudulent activities. 

Convenient authentication: With a finger vein Internet banking system, users can 

conveniently access their accounts by simply placing their finger on the smartphone's 

built-in finger vein scanner. This eliminates the need for passwords or PINs, 

streamlining the authentication process and enhancing user convenience. 

Mobile accessibility: By integrating finger vein technology into smartphones, users 

can access their Internet banking services anytime and anywhere. This mobility allows 

for on-the-go banking transactions and reduces the reliance on physical banking cards 

or additional authentication devices. 

Quick and seamless transactions: Finger vein authentication enables fast and 

seamless transactions within the Internet banking system. Users can initiate transfers, 

payments, or other banking activities with a simple finger scan, eliminating the need 

for manual input or multiple authentication steps. 

Protection against device loss or theft: Finger vein recognition adds an extra layer of 

security in case of smartphone loss or theft. Even if the device falls into the wrong 

hands, the unique finger vein pattern ensures that only the authorized user can access 

the Internet banking system. 

To implement a finger vein Internet banking system for smartphones, rigorous security 

measures must be in place to safeguard users' biometric data. Encryption, secure 

storage, and adherence to privacy regulations are essential to protect the confidentiality 

and integrity of the stored finger vein information. 

Overall, the combination of security and convenience offered by a finger vein Internet banking 

system for smartphones holds great potential for revolutionizing the way users access and 

manage their online banking accounts. 
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Employee Access Control for Banks: 

Finger vein authentication technology can be utilized by banks to create a paperless 

employee access control system. Tablets with connected finger vein authentication 

units are installed at bank branches for employee authentication. When employees enter 

or leave a branch, they undergo finger vein authentication on the tablets. Successful 

authentication records timestamp information to track their entry and exit. The 

centralized server manages the finger vein data of employees, enabling any branch to 

implement finger vein authentication after the employees have completed the 

registration process. 

Retail Industry Application of Pay-by-Finger: 

A credit card payment service based on finger vein authentication has been developed, 

eliminating the need for physical cards or smartphones. Users register their credit or 

bank cards with their finger vein information, enabling payments using finger vein 

authentication alone. Registration is simple and can be done through a tablet or 

smartphone application. Stores supporting the service allow users to make payments by 

placing their fingers over a sensor. The system also facilitates customer loyalty program 

management based on purchase history. With faster transaction times, users experience 

shorter waiting times at cash registers. Finger vein authentication was chosen for its 

security features, including anti-counterfeiting and theft prevention capabilities, as well 

as the stability of biometric patterns.  

Finger-charge Money: 

A 1:N sequential fusion authentication scheme has been developed using finger vein 

technology combined with cancellable technology. This scheme allows users to make 

payments without the need to enter an ID, relying solely on finger vein authentication. 

The integration of these technologies has significantly enhanced user convenience 

during payment transactions. 

Walkthrough Finger Vein Authentication: 

Finger vein authentication technology has been implemented for the security gates of a 

high-traffic facility. Users can simply hold their fingers over a sensor while walking 

through the gates to achieve accurate personal identification. The centralized server 

manages the finger vein data of employees, enabling any branch to implement finger 

vein authentication after the employees have completed the registration process. This 

technology is well-suited for applications in office buildings and event venues that 
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demand both high accuracy and high-speed throughput. The technology has been 

evaluated in terms of throughput, long-term authentication accuracy, and usability. The 

results showed that throughput and usability were comparable to conventional contact-

less card systems. Temperature differences had a minimal impact on the false rejection 

rate, ensuring smooth operation. 

Enhanced Convenience through Government-Industry Partnership: 

The availability of a facility that connects finger vein templates with Aadhaar cards 

could enable widespread usage of finger vein authentication for personal identity 

verification in public settings using camera-equipped devices. This would offer various 

conveniences, such as opening bank accounts via smartphones without visiting a 

physical branch or certifying official documents at public terminals (e.g., convenience 

stores) even without carrying the Aadhaar card. It would provide greater flexibility and 

accessibility for individuals in performing various transactions and verifications. 

3. UIDAI and Finger vein 

Liveliness of person is not checked for UIDAI. 

Finger print pattern copy can be utilized whereas this is not the case with finger vein. 

Finger vein scanner cost is expensive. 

UIDAI only use IRIS, and finger print. IRIS is used for identification and finger print is used 

for verification. Face recognition system in UIDAI is still in POC (proof of concept) phase. 

UIDAI can utilize finger vein for verification. 

 

4. Impact on Size and Cost of Implementation and other challenges in adopting this 

technology in Banks:  

The development of finger vein authentication using a visible-light camera required addressing 

three main technical challenges. Firstly, it was necessary to reliably identify finger vein patterns 

without relying on infrared light. Secondly, the system had to accurately identify vein patterns 

irrespective of the finger's orientation over the camera. Lastly, enhancing the authentication 

accuracy was crucial to enable its application in diverse scenarios.  

Cost of implementation of technology is a major challenge. When researching this solution, 

the researchers had considered other inexpensive biometric authentication methods such as 

fingerprint authentication.  
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Traditional finger vein authentication technologies rely on dedicated hardware that uses near-

infrared light to capture high-quality images of blood vessels. While this technology ensures 

high authentication accuracy, it faces challenges in the financial business-to-consumer (B2C) 

market due to the following reasons: 

Price Competitiveness: The cost of the hardware is relatively higher compared to alternative 

solutions like one-time password (OTP) tokens, making it less feasible for widespread 

adoption in personal Internet banking and B2C applications. 

Limited Portability: Finger vein authentication units are commonly peripheral devices that 

connect to a PC or host device using USB. This dependency on a host device and cables 

restricts their portability and convenience when used outside of a controlled environment. 

Product Life Cycle Management: Finger vein authentication units require strict management 

throughout their entire life cycle, including distribution, operation, upgrades, and secure 

disposal. Expecting end users in the B2C market to handle these responsibilities is impractical, 

and there is a risk of unauthorized use, disassembly, or tampering by malicious individuals. 

These challenges highlight the need for advancements in finger vein authentication technology 

to address cost, portability, and product life cycle management concerns for wider adoption in 

the B2C market. 

Researchers have made advancements in finger vein authentication technology by developing 

a solution that utilizes visible-light cameras. This innovation aims to enable the use of finger 

vein authentication in the financial B2C market and address the challenges mentioned earlier. 

Instead of relying on dedicated finger vein authentication units, this technology leverages the 

widespread availability of visible-spectrum color cameras found in smartphones and tablets. 

By utilizing color images captured by these cameras, finger vein authentication can be achieved 

through software alone. This approach offers significant cost reduction by eliminating the need 

for additional hardware. It also enhances portability by allowing authentication to be performed 

on widely-used smartphones and tablets. The technology facilitates life cycle management 

through distribution via app stores, easy addition of functions, and online version updates. 

Additionally, by eliminating dedicated hardware, the risk of failure in aging products and 

potential tampering is reduced. At the end of its useful life, the authentication software and 

associated data can be safely deleted by imposing usage limitations. 
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The research findings indicate that the technology performs well without any performance 

issues. Moving forward, further considerations will be needed to customize the product 

specifications, including size and cost, to align with market requirements. Additionally, 

exploring commercialization strategies that are viable from a business perspective will be 

crucial for successful implementation of the technology. 
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FEEDBACK RECEIVED ON FINAL REPORT AND OUR 
RESPONSES 

1. Add further details on usability/ deployment of your research work. 

Our Response: The usability of our research work holds paramount significance in the context 

of the banking and finance sector, where security, privacy, and user experience are critical. Our 

research offers transformative opportunities for this sector, and we have meticulously 

considered the practical aspects of implementing our findings: 

Enhanced Security: In the banking and finance sector, maintaining the highest level 

of security is non-negotiable. Our research, with its transformed biometric templates 

and cancelability techniques, provides an advanced layer of security. It can be deployed 

to secure access to financial institutions, safeguarding not only the physical premises 

but also digital assets and customer data. 

Fraud Prevention: The finance sector is particularly vulnerable to fraud, including 

identity theft and fraudulent transactions. Our research can be harnessed to deploy 

multi-factor authentication systems, where finger vein biometrics add an extra layer of 

security. This not only verifies the user's identity but also ensures the authenticity of 

transactions, reducing the risk of fraudulent activities. 

Digital Banking and Internet Banking: With the growing trend toward digital 

banking and online financial transactions, user authentication becomes a pivotal 

concern. Our research can be integrated into mobile banking applications and online 

platforms, offering secure yet convenient authentication options. Customers can access 

their accounts with the assurance that their financial information remains private, even 

during internet banking sessions. 

ATM Security: Automated Teller Machines (ATMs) are a critical touchpoint in the 

finance sector. Deploying finger vein biometrics at ATMs can drastically reduce the 

risk of card skimming and unauthorized cash withdrawals. Customers can use ATMs 

with the confidence that their financial transactions are protected. 

Data Center Access: For financial institutions, secure data center access is vital. Our 

research can be applied to control access to data centers where sensitive financial data 
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is stored. This ensures that only authorized personnel can enter these highly secure 

environments. 

Regulatory Compliance: The finance sector is subject to stringent regulatory 

requirements. Our research aligns with regulatory demands for robust user 

authentication and data protection. Implementing our findings aids financial institutions 

in complying with regulations such as GDPR and PCI DSS. 

Customer Trust: Trust is the bedrock of the banking and finance industry. By 

deploying our research, financial institutions can demonstrate their commitment to 

customer data protection and privacy, particularly in the realm of Internet banking. This 

fosters trust among clients, potentially attracting more customers to use online banking 

services. 

Scalability: We recognize that the finance sector often deals with large customer bases. 

Our research is designed to be scalable, accommodating millions of users without 

compromising security or performance. This ensures that financial institutions can 

readily deploy our solutions across their operations, including internet banking 

platforms. 

User Experience: While security is paramount, user experience is also crucial. Our 

research allows for a seamless and user-friendly experience. Customers can enroll their 

finger vein biometrics easily, and the authentication process is quick and intuitive, 

whether they are accessing their accounts at a physical branch or via internet banking. 

Deployment:  

The architecture comprises seven interconnected components as shown in Figure 56. It 

begins with the Finger Vein Scanning Device, a specialized hardware system that 

captures near-infrared images of finger veins. The Features Extraction Software 

processes these images, extracting relevant features to create digital representations of 

vein patterns. Biometric Template Generation transforms these features into secure 

templates. The Cancelability Software enhances security by applying techniques like 

multiline neighboring relations. High-End Servers securely store these templates. 

During authentication, Matching compares user-provided data to templates. Finally, 
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End User Applications, integrated with the architecture, use this biometric data for 

secure access, making it suitable for applications in banking and finance.  

 

Figure 56: High Level Deployment Architecture of Finger vein with Cancelability 

In conclusion, the banking and finance sector, including Internet banking, is poised to 

benefit significantly from the usability and deployment of our research. It offers 
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enhanced security, fraud prevention, regulatory compliance, and a better overall 

experience for both customers and institutions, particularly in the rapidly evolving 

landscape of online and digital banking. We are committed to collaborating with 

financial organizations to integrate our findings into their systems, ultimately fortifying 

the sector against emerging threats and providing peace of mind to customers. Our 

research aligns with the sector's vision of a secure, efficient, and customer-centric 

financial ecosystem across physical and digital channels. 

2. Find Use Case/s 

Our Response:  Our research on finger vein biometrics and cancelability techniques holds 

substantial promise for practical implementation within the banking and finance sector, 

offering several impactful use cases. These applications align with the industry's growing 

need for robust security, user authentication, and fraud prevention. Here are prominent use 

cases: 

Multi-Factor Authentication (MFA): The banking and finance sector relies heavily 

on user authentication for account access. Our research provides an ideal solution for 

implementing MFA. By integrating finger vein biometrics as one of the authentication 

factors, financial institutions can significantly enhance security. Users would need to 

provide both something they know (like a password) and something they are (finger 

vein biometrics), creating a formidable barrier against unauthorized access. 

Secure Branch Access: Traditional bank branches still play a pivotal role in the 

industry. Our research can be deployed to enhance physical security within these 

branches. Employees can use finger vein biometrics for secure access to restricted areas 

where sensitive operations are conducted, such as the vault or data center. This reduces 

the risk of unauthorized access and internal fraud. 

ATM Security: ATMs remain a critical service touchpoint. Implementing finger vein 

biometrics at ATMs can significantly reduce the risk of card skimming and PIN theft. 

Customers can securely access their accounts by scanning their finger veins, ensuring 

that only authorized users can withdraw cash or perform transactions. 

Internet Banking and Mobile Apps: As digital banking gains prominence, securing 

online transactions becomes paramount. Our research can be integrated into banking 
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apps and internet banking platforms to provide a secure and user-friendly authentication 

method. Users can log in or authorize transactions using finger vein biometrics, 

ensuring that their online financial activities are safeguarded against unauthorized 

access. 

Call Center Authentication: Call centers are often used for customer support and 

financial inquiries. By using finger vein biometrics for customer authentication during 

phone interactions, financial institutions can ensure that confidential information is 

only disclosed to authorized customers, mitigating the risk of identity theft. 

Data Center Security: The security of data centers that store sensitive financial 

information is critical. Our research can be employed to control physical access to these 

facilities. Only authorized personnel with registered finger vein biometrics would be 

allowed entry, fortifying data security. 

Compliance and Audit Trails: Regulatory compliance is a cornerstone of the banking 

and finance sector. Our research can help institutions comply with data security 

regulations by providing a robust authentication method. Additionally, it can contribute 

to detailed audit trails, helping organizations monitor and report access to sensitive 

financial data. 

Customer Onboarding: During the customer onboarding process, finger vein 

biometrics can be used for identity verification, streamlining the Know Your Customer 

(KYC) procedures. This not only enhances security but also expedites the customer 

registration process. 

Benefits of Finger vein technology over existing biometric technologies:  

Innate Liveness Check: Finger vein biometrics inherently includes a liveness check, 

requiring a live finger with blood flow for authentication. This ensures not only identity 

verification but also confirms the presence and vitality of the individual during the 

authentication process. 

Stability Over Time: Finger vein patterns remain stable throughout an individual's life, 

with minimal chances of alteration. This longevity and consistency make it a 

dependable choice for biometric authentication. 
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Subdermal Patterns: Finger vein patterns are hidden beneath the skin's surface, 

making them extremely difficult to forge or tamper with. Unlike surface-level 

biometrics like fingerprints, finger vein patterns cannot be easily replicated. 

Highly Secure: The subdermal nature of finger vein patterns, combined with the 

requirement for blood flow, adds an extra layer of security, making it resistant to 

spoofing attempts, including the use of artificial fingers or images. 

Non-Intrusive: Finger vein recognition is non-intrusive and contactless, making it 

more hygienic and user-friendly, especially in applications where hygiene is critical, 

such as healthcare or finance. 

Low False Acceptance Rate: Finger vein technology offers a low False Acceptance 

Rate (FAR), minimizing the chances of unauthorized access. 

Versatile Applications: Finger vein biometrics can be applied in various domains, 

including access control, financial transactions, healthcare, and identity verification, 

due to its robustness and security. 

These unique features collectively establish finger vein biometrics as a highly secure, 

reliable, and versatile authentication solution, setting it apart from other biometric 

technologies. 

These use cases demonstrate the versatility and practicality of implementing our research 

within the banking and finance sector. By integrating finger vein biometrics and cancelability 

techniques, financial institutions can elevate their security standards, foster trust among 

customers, and ensure regulatory compliance in an ever-evolving landscape of digital and 

physical banking services. Our research provides a holistic approach to addressing the sector's 

security and authentication needs while enhancing the overall customer experience. 

3. Estimate probable cost of implementation 

Our Response: The estimation of likely implementation costs for our research poses a distinct 

challenge due to several inherent factors in the current research phase. Notably, the technology 

remains in its developmental stages, and the availability of commercial products aligning 
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precisely with our research goals is limited, often introducing various technological and 

operational constraints. 

In light of these obstacles, we have diligently worked to offer a cost estimate that serves as an 

initial guideline for financial planning. It is crucial to underscore that this estimate is inherently 

tentative, given the dynamic nature of the technology and the ever-evolving landscape within 

the banking and finance sector. 

Our tentative cost estimation encompasses various elements, including research and 

development costs, investments in hardware and infrastructure, integration and deployment 

expenses, initiatives for training and educating users, compliance and security audits, 

considerations for scaling and maintenance, potential partnerships with vendors, and provisions 

for miscellaneous expenses. Each of these categories is subject to fluctuations and adjustments 

as the technology matures and adapts to specific use cases in the banking and finance sector. 

It is essential to reiterate that this estimate represents an initial assessment, providing a 

foundational framework for financial planning rather than a definitive cost projection. The 

actual implementation costs may vary significantly based on factors such as technological 

advancements, the availability of commercial solutions, evolving regulatory requirements, and 

unforeseen contingencies. 

As our research continues to advance, our commitment remains unwavering in refining our 

cost estimation in harmony with the evolving landscape. We will actively monitor 

technological advancements, explore potential collaborations with industry leaders, and adjust 

our financial projections accordingly to ensure the most accurate and practical cost assessment 

for future deployment in the banking and finance sector. Estimating the cost of implementing 

finger vein biometrics with cancelability in a bank, like SBI, entails numerous variables, 

including the scope of implementation, branch count, security levels, and technology provider 

choices. However, we can offer a general cost breakdown to provide insight into the potential 

expenses associated with such a project: 

Method 1: Using Commercial Finger Vein Scanning Devices 

Hardware Costs: 

Finger Vein Scanning Devices: ₹60,000 to ₹140,000 per unit (assuming an exchange 

rate of 70 INR per USD). 
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Number of Devices: Let's assume 100 devices. 

Total Hardware Cost: ₹35,00,000 to ₹14,00,0000 

Software Development: 

Software Development/Procurement: ₹50,00,000 

Integration and Customization: ₹20,00,000 

Data Storage and Processing: 

Data Storage Infrastructure: ₹20,00,000 

Data Processing Software: ₹10,00,000 

Cancelability Implementation: 

Licensing Cancelability Algorithms (Depends upon Finger vein scanner vendor 

capabilities): ₹20,00,000- ₹50,00,000 

Cancelability Algorithms and its integration with Vendor’s provided solution: 

₹20,00,000 

Deployment and Integration: 

Deployment and Installation: ₹10,00,000 

Integration Costs with final product: ₹20,00,000 

Maintenance and Support: 

Annual Maintenance: ₹20,00,000 

Regulatory Compliance: 

Compliance Costs: Varies depending on your location and regulations. Budget 

accordingly. 

Training and User Education: 

Training Costs: ₹5,00,000 

Contingency and Miscellaneous Costs: 

Allocate around 10-20% of the total project budget as a contingency: ₹10,00,000 

Total Estimated Cost: ₹2,65,00,000 to ₹2,95,00,000. Please note that these are 

approximate figures, and the actual costs may vary based on specific project factors and 

any fluctuations in expenses or exchange rates. 

Method 2: Developing Custom Finger Vein Devices 
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Hardware Development: 

Research and Development: ₹30,00,000 (depending on complexity) 

Manufacturing Costs: ₹10,00, 000 (Assuming 100 devices) 

Note: During our research journey, we have explored design of  a finger vein scanning 

device and can potentially develop it in collaboration with a reputable research institute, 

university, or organizations like IDRBT (Institute for Development and Research in 

Banking Technology) or IIBF (Indian Institute of Banking and Finance). Additionally, 

it's important to note that no commercially available scanning devices provide raw 

finger vein images; they typically provide templates. 

Software Development: 

Software Development: ₹5,00,000  

Feature Extraction Algorithm: ₹2,00,000 

Data Storage and Processing: 

Data Storage Infrastructure: ₹20,00,000 

Data Processing Software: ₹10,00,000 

Cancelability Implementation: 

Licensing Cancelability Algorithms: ₹5,00,000 

Development: ₹20,00,000 

Deployment and Integration: 

Deployment and Installation: ₹5,00,000 

Integration Costs: ₹10,00,000 

Maintenance and Support: 

Annual Maintenance: ₹5,00,000  

Regulatory Compliance: 

Compliance Costs: Varies depending on your location and regulations. Budget 

accordingly. 

Training and User Education: 

Training Costs: ₹5,00,000 

Contingency and Miscellaneous Costs: 
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Allocate around 10-20% of the total project budget as a contingency: ₹7,00,000 to 

₹14,00,000 

Total Estimated Cost (without minimum or maximum range): ₹134,00,000 to 

₹141,00,000. Please note that these are approximate figures, and the actual costs may 

vary based on specific project factors and any fluctuations in expenses or currency 

exchange rates.  

Intended Use of 100 Devices: 

The allocation of 100 finger vein scanning devices is a strategic investment aimed at 

enhancing our banking operations and ensuring a secure and efficient customer 

experience. These devices will serve as a versatile biometric authentication solution 

that can be flexibly integrated into various aspects of our banking ecosystem. Our 

intention is to harness the potential of finger vein technology for multiple use cases, 

depending on the evolving needs and decisions of our management.  

Cost Allocation:  

The estimated cost presented in our analysis covers the integration of these 100 finger 

vein scanning devices with our existing applications and systems. This includes the 

development or procurement of software, data storage infrastructure, cancelability 

implementation, deployment, maintenance, training, and compliance-related expenses. 

It's important to note that this cost estimation is based on the current state of technology 

and market conditions. 

Furthermore, it's crucial to highlight that as technology in the field of finger vein 

biometrics matures and research progresses, we anticipate significant cost reductions in 

device production and system implementation. These advancements will contribute to 

improved cost-efficiency in the long term. 

In summary, the allocation of 100 finger vein scanning devices is part of our strategic 

approach to embracing biometric authentication in the banking sector. These devices 

will be deployed across various use cases, with the flexibility to adapt to emerging 

needs. The estimated cost accounts for initial integration, and we anticipate cost savings 

in the future as the technology evolves. 
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Our Recommendation: 

We strongly recommend pursuing the second method of implementing finger vein 

technology in the banking sector. This choice is justified by several compelling reasons: 

i. Unavailability of Commercially Accessible Finger Vein Images: 

Commercially available finger vein scanners typically provide pre-processed finger 

vein biometric templates rather than raw finger vein images. This limitation makes it 

impossible to design and develop solutions that require access to the raw finger vein 

images, such as research into feature extraction algorithms or the creation of custom 

databases. By opting for the second method, which involves developing an in-house 

finger vein scanner capable of capturing raw images, we gain direct access to the 

essential data required for comprehensive research and development. 

ii. Limited Availability of Finger Vein Datasets: 

In India and globally, the availability of finger vein image datasets for research 

purposes is scarce. Obtaining permission to access datasets from the few universities 

and research institutions that possess such resources can be challenging and time-

consuming. By pursuing the second method, we mitigate these obstacles. We can create 

our own dataset, ensuring full control and accessibility, thereby expediting research and 

development efforts. 

iii. Enhanced Security and Data Integrity: 

Handling sensitive biometric data, such as finger vein patterns, demands the highest 

level of security and data integrity. Building an in-house product provides greater 

control over data storage, encryption, and access protocols, reducing the risk of data 

breaches or misuse. This approach aligns with industry standards for safeguarding 

personal identifiable information (PII) and enhances user trust. 

iv. Collaboration Opportunities: 

The second method opens doors for collaboration with other research institutions, both 

nationally and internationally. By developing our finger vein scanner and datasets, we 

can engage in collaborative research projects and knowledge sharing, fostering 

innovation and staying at the forefront of finger vein technology advancements. 

Notably, with UIDAI (Unique Identification Authority of India) exploring the potential 
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use of finger vein technology, our in-house expertise positions us favourably for future 

collaborations in this critical domain. 

v. Cost Savings and Scalability: 

As research and technology in finger vein biometrics mature, the cost of devices can be 

significantly reduced through in-house development. We can scale our solutions 

without dependency on external vendors like Hitachi, saving substantial amounts of 

money in the long term. This cost-efficiency aligns with prudent financial management 

practices and ensures that the banking sector can benefit from this technology without 

incurring high ongoing expenses. 

In conclusion, the second method offers numerous advantages, including enhanced 

research capabilities, greater control over data, opportunities for collaboration, and 

substantial cost savings as the technology matures. It aligns with the long-term goals of 

the banking sector and India's broader biometric authentication landscape, making it 

the recommended approach for the implementation of finger vein technology in the 

banking industry. 

 

4. Kindly also add Executive Summary in your report. 

 

Our Response: In an age where secure identity verification is paramount, the field of 

biometrics has emerged as a transformative technology. This research report represents 

a comprehensive and pioneering exploration of the promising domain of finger vein 

biometrics, aimed at advancing understanding and practical applications in this 

evolving field. 

 

The study embarked on an empirical journey, identifying three benchmark databases—

UTFV, HKPU, and FV-USM—as foundational resources for in-depth analysis. Our 

commitment to thorough experimentation led to the design of a meticulously crafted 

experimental setup, tailored to extract discriminative features from finger vein images 

effectively. Crucially, the selection of a binarization threshold value of 155 emerged 

from extensive testing, offering a finely tuned balance between feature richness and 

noise reduction in the output binarized image. 
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A pivotal and innovative contribution of this research is the development and 

application of the multiline neighbouring relations generation cancelability technique 

to the extracted features. This technique serves as a linchpin, significantly enhancing 

the security and privacy aspects of finger vein biometrics. By integrating this technique 

into our framework, we have fortified the foundations upon which future applications 

will be built, ensuring that user data remains confidential and protected. 

 

The essence of our pioneering contribution is vividly demonstrated by the remarkable 

improvement in the Equal Error Rate (EER) achieved through the utilization of 

transformed biometric templates. In direct comparison to untransformed finger vein 

templates, this research has unequivocally proven the tangible and transformative 

enhancements in recognition accuracy and security. This empirical evidence not only 

substantiates the effectiveness of our methodology but also underscores the profound 

potential of finger vein biometrics as a secure means of identity verification. 

 

However, this research is not the culmination but the commencement of a remarkable 

journey into the vast potential of finger vein biometrics. The road ahead is marked by 

multifaceted exploration and expansion. A multitude of feature extraction methods and 

cancelability techniques remain untapped, each offering the promise of unveiling new 

dimensions and possibilities in this field. Our unwavering commitment to diverse 

experimentation is a testament to our dedication to the relentless pursuit of innovation. 

 

Furthermore, we recognize the imperative for expansion. The inclusion of additional 

datasets, encompassing a broader spectrum of scenarios and subjects, is not just a 

scientific imperative but a practical necessity. Such expansion will augment the 

robustness and reliability of finger vein biometrics, enabling its seamless integration 

into a myriad of real-world applications, from secure access control to financial 

transactions. 

 

In conclusion, this research is a shining beacon of innovation and progress within the 

realm of finger vein technology. It promises to make profound and lasting contributions 

to the field of biometric verification. As we continue to push the boundaries of what is 

possible in this exciting frontier, our findings resonate with the potential of biometrics 

to shape a more secure, connected, and privacy-respecting future. This research is not 
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merely a report but a clarion call for the continued exploration of the limitless 

possibilities inherent in finger vein biometrics. 
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